# SG-Link-200® Connecting and calibrating mV/V sensors

### **Component Overview**

The SG-Link-200 is a 3-channel wireless analog sensor node with 3 differential input channels (strain channels) designed to support strain gauges and load cells.



Series U9C Miniature Tension/Compression Loadcell with 2 mV/V Output sensitivity and 100 LBF full scale range used for the following examples.





## Connecting the Load Cell to the SG-Link-200

 Connect the wires of the sensor to one of the SG-Link-200 differential input channels (channels 1-3) according to the below diagram (reference the <u>SG-LINK-200 Quick Start</u> <u>Guide</u>):



Note: If the output goes down when load is applied to the sensor reverse the green and white wires in the SG-Link-200.

## **Configuring the SG-Link-200 in SensorConnect**

- 1. Open SensorConnect and power on the SG-Link-200.
- 2. From the node list select the node being tested.
- 3. Click on the **Configure** tile under the Control options.



4. Take the sensitivity of the sensor and multiply it by the channel excitation voltage. In the case of the SG-Link-200 the excitation voltage is **2.5V**. The result of this will allow you to select the appropriate Input Range. See the below example.

#### Example:

| _oadcell output sensitivity: | 2mV/V                       |
|------------------------------|-----------------------------|
| Excitation voltage:          | 2.5V                        |
| Result:                      | 2mV/V x 2.5V = <b>5.0mV</b> |

In this example you would want to select **+/- 19.532mV** from the Input Range dropdown options.



# **MicroStrain Sensing Technical Note**

| Excitation Voltage 😨  | 2.5 V 💌       |          |
|-----------------------|---------------|----------|
| Input Range 🝘         |               |          |
| Channel(s             | ) Input Range |          |
| Differential (ch1     | ) ±19.532 mV  |          |
|                       | Gain: 4       | *        |
| Differential (ch2     | ) ±312.5 mV   |          |
|                       | Gain: 8       |          |
| Differential (ch3     | ) +156.25 mV  |          |
|                       | Gain: 16      |          |
| Low Pass Filter @     | +78 125 m\/   |          |
| Channel(s             | Gain: 32      |          |
|                       | , 100 000 mV  |          |
| Differential (ch1-ch3 | ) ±39.063 mv  |          |
|                       | duin. of      | _        |
|                       | ±19.532 mV    |          |
|                       | Gain: 128     | <b>*</b> |

## 5. Click on the **Calibration** tab.

| Hardware      | Calibration          | D           | Sampling | Power    |
|---------------|----------------------|-------------|----------|----------|
|               | Excitation Voltage 🛿 | 2.5 V •     |          |          |
| Input Range 🛛 | Channel(s)           | Input Range |          |          |
|               | Differential (ch1)   | ±19.532 mV  |          | ~        |
|               | Differential (ch2)   | ±39.063 mV  |          | <i>•</i> |
|               | Differential (ch3)   | ±39.063 mV  |          | 7        |

### 6. Click on **Cal Tools**, then select **mV/V**.

| Hardware                         |               | Calibration 0 | Sampling | Power                                |
|----------------------------------|---------------|---------------|----------|--------------------------------------|
| Linear Calibration<br>Channel(s) | 0             | Unit          |          | Calibration                          |
| Differential (ch1)               | ✓ Cal Tools ① | Microstrain   | Ŧ        | = ( -1.8025e-3 x bits ) + 17354.752  |
| Differential (ch2)               | Strain        | Microstrain   |          | = ( -1.7594e-3 x bits ) + 15604.3584 |
| Differential (ch3)               | mV/V          | Microstrain   | •        | = ( -1.7419e-3 x bits ) + 15488.2051 |
|                                  | Manual        |               |          |                                      |
|                                  | Tare          |               |          |                                      |



- 7. Enter the sensor's output sensitivity into the mV/V max capacity input field.
- 8. Enter the sensor's full scale range into the Max Capacity input field.
- 9. Enter the Unit desired from the drop-down menu.

| mV/V Calibration |                     |                  |                    | ×      |
|------------------|---------------------|------------------|--------------------|--------|
| Node: 32743, Cha | annel: ch1 - Differ | ential (ch1)     |                    |        |
| Sensitivity: 2   |                     | mV/V             |                    |        |
| Max Capacity: 10 | 0                   | Pound            | Ŧ                  |        |
| 2                | Slope: 4.6566       | e-5 lbs/bit      |                    |        |
| C                | Offset: -390.62     | 5 lbs            |                    |        |
| Effective R      | ange: -390.62       | 5 to 390.625 lbs |                    |        |
|                  |                     |                  | Accept Calibration | Cancel |
|                  |                     |                  |                    |        |
|                  |                     |                  |                    |        |

10. Click on Accept Calibration.



11. Click on Apply Configuration.



12. Go back to the Cal tools and Select Tare

| Hardware             |                | Calibration 0 | Sampli | ng               | Power                 |
|----------------------|----------------|---------------|--------|------------------|-----------------------|
| Linear Calibration @ |                |               |        |                  |                       |
| Channel(s)           |                | Unit          |        | Calibration      |                       |
| Differential (ch1)   | Cal Tools      | Pound         | v      | = ( 4.6566e-5 x  | : bits ) - 390.625    |
| Differential (ch2)   | Strain         | Microstrain   | Ψ.     | = ( -1.7594e-3 : | x bits ) + 15604.3584 |
| Differential (ch3)   | mV/V<br>Manual | Microstrain   | ~      | = ( -1.7419e-3 ; | x bits ) + 15488.2051 |
|                      | Tare           |               |        |                  |                       |



13. With no load on the load cell (or to zero out with a pre-loaded sensor) Click the **Sample Now** (a good idea here is to click the Sample Now button several times and observe the current Measurement remains approx. same value).

| Tare Offset          |                                |                 |              | × |
|----------------------|--------------------------------|-----------------|--------------|---|
| Node: 3              | 2743, Channel: ch1 - Differe   | ntial (ch1)     |              |   |
| Original Calibrati   | on: lbs = ( 4.6566e-5 x b      | its ) - 390.625 |              |   |
| Current Measureme    | ent: 0.4772 lbs                | C Sample Now    |              |   |
| Current Lo           | ad: 0                          | Pound           | Ŧ            |   |
| Applied Calibration: | lbs = ( 4.6566e-5 x bits ) - 3 | 90.625          |              |   |
| Offset:              | -391.1022 lbs ( -0.4772 )      |                 | Apply Offset |   |
| Effective Range:     | -391.1022 to 390.1478 lbs      |                 | D Revert     |   |

- 14. Click the **Apply Offset** button to write the value to the node.
- 15. Under the Device section, click on the node, then click on the **Sample** tile from the Control panel.



16. Enable the channel being tested with the Sensor and the other sampling desired.

| Net | Network Settings: 🔽 Synchronized 🛛 🔽 Lossless 🖗 Protocol: 🛛 LXRS 💌 |                   |                                                          |  |             |                |         |        |
|-----|--------------------------------------------------------------------|-------------------|----------------------------------------------------------|--|-------------|----------------|---------|--------|
| ~   | Node                                                               | Channels Sampling |                                                          |  | Data Type 🚱 | Log/Transmit 🕑 | % Total | Status |
| ~   | 32743                                                              | 1 active 🔹        | 64 Hz continuously                                       |  | float 🔹     | Transmit 🔹     | 3.13%   | ✔ Ok   |
|     |                                                                    | Raw Cha           | annels 🕑<br>ential (ch1)<br>ential (ch2)<br>ential (ch3) |  |             |                |         |        |



17. Once node is all configure Click Apply and Start Network.



18. Click the Data tab, then click on +Add Widget.



19. Select the Time Series widget.

| + Add Widget                            |                               |              |                 |  |
|-----------------------------------------|-------------------------------|--------------|-----------------|--|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                               |              | -0.1138         |  |
| Time Series                             | Linear Gauge                  | Radial Gauge | Numeric Display |  |
|                                         | Channel  Tree  Exts    500001 |              | 14<br>14<br>14  |  |

20. Select the node and channel to view the data output in the time series widget.





# **MicroStrain Sensing Technical Note**



21. With no load (or at the pre-loaded value the channel was Tared at) the data coming in should be approx. zero

22. If possible, place known loads on the sensor to verify calibration.

