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Preface to Part 2 

The study of structural dynamics is essential for under- 
standing and evaluating the performance of any engineer- 
ing product. Whether we are concerned with printed-circuit 
boards or suspension bridges, high-speed printer mecha- 
nisms or satellite launchers, dynamic response is funda- 
mental to sustained and satisfactory operation. 

Modal analysis of the data obtained from structural testing, 
provides us with a definitive description of the response of 
a structure, which can be evaluated against design specifi- 
cations. It also enables us to construct a powerful tool, the 
modal model, with which we can investigate the effects of 
structural modifications, or predict how the structure will 
perform under changed operating conditions. 

A simplified definition of modal analysis can be made by 
comparing it to frequency analysis. In frequency analysis, a 
complex signal is resolved into a set of simple sine waves 
with individual frequency and amplitude parameters. In 
modal analysis a complex deflection pattern (of a vibrating 
structure) is resolved into a set of simple mode shapes with 
individual frequency and damping parameters. 
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A rigorous mathematical approach to the subject is outside 
the scope of this primer. Where necessary we simply quote 
the mathematics! definitions required to support our intu- 
itive introductions. For readers who need to confirm the 
quoted mathematical "truths" we have included a list of rel- 
evant literature at the end of this booklet. 

To the assumptions already made about the reader (see 
preface to part 1), we now add a knowledge of the subject 
matter of part 1 (Mechanical Mobility Measurements). 



 
 

Experimental Modal Analysis 

Introduction 
Most structures vibrate. In operation, all machines, vehicles
and buildings are subjected to dynamic forces which cause
vibrations. Very often the vibrations have to be investigat-
ed, either because they cause an immediate problem, or
because the structure has to be "cleared" to a "standard"
or test specification. Whatever the reason, we need to
quantify the structural response in some way, so that its
implication on factors such as performance and fatigue can
be evaluated. 

By using signal-analysis techniques, we can measure vibra- 
tion on the operating structure and make a frequency anal- 
ysis. The frequency spectrum description of how the vibra- 
tion level varies with frequency can then be checked 
against a specification. This type of testing will give results 
which are only relevant to the measured conditions. The 
result will be a product of the structural response and the 
spectrum of an unknown excitation force, it will give little or 
no information about the characteristics of the structure it- 
self. 

An alternative approach is the system-analysis technique in 
which a dual-channel FFT analyser can be used to measure 
the ratio of the response to a measured input force. The 
frequency response function (FRF) measurement removes 
the force spectrum from the data and describes the inher- 
ent structural response between the measurement points. 
From a set of FRF measurements made at defined points 
on a structure, we can begin to build up a picture of its 
response. The technique used to do this is modal analysis. 
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All Structures Exhibit Modal Behaviour 
An FRF measurement made on any structure will show its 
response to be a series of peaks. The individual peaks are 
often sharp, with identifiable centre-frequencies, indicating 
that they are resonances, each typical of the response of a 
single-degree-of-freedom (SDOF) structure. If the broader 
peaks in the FRF are analyzed with increased frequency 
resolution, two or more resonances are usually found close 
together. The implication is that a structure behaves as if it 
is a set of SDOF substructures. This is the basis of modal 
analysis, through which the behaviour of a structure can be 
analyzed by identifying and evaluating all the resonances, 
or modes, in its response. 

Let us begin with a review of how structural response can 
be represented in different domains. Through this we will 
be able to see how the modal description relates to de- 
scriptions in the spatial, time and frequency domains. 

As our example, we will take the response of a bell, which 
is a lightly damped structure. When the bell is struck, it 
produces an acoustical response containing a limited num- 
ber of pure tones. The associated vibration response has 
exactly the same pattern, and the bell seems to store the 
energy from the impact and dissipate it by vibrating at par- 
ticular discrete frequencies. 

In the illustration, each column shows the response of the 
bell represented in different domains: 

In the physical domain, the complex geometrical deflection 
pattern of the bell, can be represented by a set of simpler, 
independent deflection patterns, or mode shapes. 

In the time domain the vibration (or acoustic) response of 
the bell is shown as a time history, which can be represent- 
ed by a set of a decaying sinusoids. 

In the frequency domain, analysis of the time signal gives 
us a spectrum containing a series of peaks, shown below 
as a set of SDOF response spectra. 

In the modal domain we see the response of the bell as a 
modal model constructed from a set of SDOF models. 
Since a mode shape is the pattern of movement for all the 
points on the structure at a modal frequency, a single mod- 
al coordinate q can be used to represent the entire move- 
ment contribution of each mode. 

Looking back from the modal domain, along the rows in the 
illustration, we see that each SDOF model is associated 
with a frequency, a clamping and a mode shape. These are 
the MODAL PARAMETERS: 

• modal frequency 

• modal damping 

• mode shape 

which together form a complete description of the inherent 
dynamic characteristics of the bell, and are constant wheth- 
er the bell is ringing or not. 

Modal analysis is the process of determining the modal pa- 
rameters of a structure for all modes in the frequency 
range of interest. The ultimate goal is to use these parame- 
ters to construct a modal model of the response. 

Two observations worth noting here are that: 

• Any forced dynamic deflection of a structure can be rep- 
resented as a weighted sum of its mode shapes. 

• Each mode can be represented by an SDOF model. 
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Single-degree-of-freedom (SDOF) Models 

As each peak - or mode - in a structural response can be 
represented by an SDOF model, we will look at some as- 
pects of SDOF dynamics. In particular, we will examine the 
way in which SDOF structure can be modelled in the physi- 
cal, time and frequency domains. These models are not in- 
tended to represent physical structures, but will serve as 
instruments for interpreting dynamic behaviour (constrained 
by a set of assumptions and boundary conditions). They will 
help us to: 
• understand and interpret the behaviour of structures; 
• describe the dynamic properties of structures, using a 

small set of parameters; 
• extract the parameters from measured data (curve-fit- 

ting). 

•••• An analytical model can be constructed in the physical 
domain. It is an abstract system consisting of a point mass 
(m). supported by a massless linear spring (k) and connect- 
ed to a linear viscous damper (c). The mass is constrained 
so that it can move in only one direction (x) - a Single- 
degree-of-freedom. 

•••• A mathematical model in the time domain can be de- 
rived by applying Newton's Second Law to the analytical 
model. By equating the internal forces (inertia, damping and 
elasticity) with the external (excitation) force, we obtain the 
model 

 

which is a second-order differential equation. A model 
which is more mathematically manageable can be obtained 
in the frequency domain. 
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SDOF Models in the Frequency Domain 

•••• A spatial-parameter model can be constructed in the 
frequency domain to describe the frequency response func- 
tion H(ω) in terms of mass, spring stiffness and damping 
coefficient. 
Let us look at the behaviour of this model under sinusoidal 
excitation and see what happens to the magnitude |H(ω)| 
and phase  as frequency increases. 

The static deflection is controlled by spring stiffness alone. 
At low frequencies the response is dominated by the spring 
and is in phase with the excitation. 

As frequency increases, the inertial force of the mass has 
an increasing influence. At a particular frequency (ω0 = k/m 
the undamped natural frequency) the mass and spring 
terms cancel each other out, the response is controlled only 
by the damping term, and compliance becomes high. If the 
damping term was, in fact, zero the compliance would be 
infinite. At ω0, the response lags the excitation by 90°. 

At frequencies greater than ω0, the mass term takes con- 
trol, the system begins to behave simply as a mass, the 
compliance decreases and the response lags the excitation 
by 180°. 

•••• The FRF (or black-box) model is non-parametric. It is 
based on the definition of H(ω). 

X(ω) = H(ω) · F(ω) 

H(ω) is in terms of compliance (displacement/force). It is 
the ratio of output/input spectra; and varies as a function 
of frequency (ω). 

This model links the analytical SDOF model to practical 
measurements. 
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The spatial parameter model is ideal for working with ana- 
lytical systems. With real structures we will usually have lit- 
tle or no knowledge of the mass, stiffness and damping 
distributions. The next model is a practical link between 
theory and measurements. 

•••• The modal-parameter model is shown in the illustration. 
It is constructed using two parameters which can be ob- 
tained from FRF measurements. 

In the illustration, H(ω) is defined in terms of the pole loca- 
tion (p) and the residue (R) - and their complex conjugates 
(p* and R*). The pole location and the residue are them- 
selves defined in terms of the spatial parameters. 

The pole location is a complex number. The numerical val- 
ue of its real part (σ) is the rate at which a damped oscilla- 
tion decays. This is shown on the impulse response func- 
tion in the time domain. In the frequency domain, a 
represents half the -3 dB bandwidth of the FRF peak. The 
imaginary part of the pole location is the modal frequency - 
the damped natural frequency (ωd) for a free decaying os- 
cillation. 

The residue for an SDOF system is an imaginary number 
which expresses the strength of the mode. 

As indicated in the illustration, both the pole location and 
the residue can be obtained from measurements made on a 
displayed FRF. The modal parameter model thus gives the 
relationship between the analytical models and experimen- 
tal measurements. 
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A Closer Look at Pole Location and Residue 
As these two parameters are fundamental to modal analy- 
sis, let us look at them in more detail. 

•••• The pole location contains two of the modal parameters 
listed on page 4. The real part of the pole location is the 
rate at which free vibrations die out (related to the modal 
damping), and the imaginary part is the frequency at which 
the system oscillates in free decay (modal frequency). This 
information is held in the form of a centre frequency and a 
half-bandwidth (at -3 dB) of a resonance. The pole location 
describes the shape of the magnitude and phase curves of 
the FRF. It gives us a qualitative measure of the dynamic 
properties. 

•••• The residue is a mathematical concept and has no direct 
interpretation in physical terms. It carries the absolute scal- 
ing of the FRF, and thus the level of the magnitude curve. 
We will see later that the residue is related to the third 
modal parameter, the mode shape. 

The residue is sometimes called the pole-strength, but the 
magnitude of a mode is not given by the residue alone. It is 
the ratio of the residue to the decay rate: 

R H(ωd) ≅ 
σ 

The illustration gives an example of the properties of pole 
location and residue. In a simplistic SDOF view, a hi-fi turn- 
table unit could have the same stiffness, damping and mass 
distribution as a car, and hence the same pole location. 
Their measured FRFs would have the same shape but their 
response to unit force would be quite different. The differ- 
ence can be seen in the residues. 
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The DOF and Multiple-degree-of-freedom (MDOF) Models 
Previous models have been restricted to the SDOF case, 
with only one movement in a single direction. Real struc- 
tures have many points which can move independently - 
many degrees-of-freedom. To make an FRF measurement 
on a real structure we have to measure the excitation and 
response between two points. But any point may have up to 
six possible ways of moving so we must also specify the 
measurement direction. 
•••• A degree-of-freedom (DOF) is a measurement-point-and- 
direction defined on a structure. An index i is used to indi- 
cate a response DOF, and j an excitation DOF. Additional 
indices x,y and z may be used to indicate the direction. 

Xi(ω) 
Thus   Hij(ω) ≡ ---------- 
       Fj(ω) 

By writing H (ω) in two different ways, we obtain the two ij
MDOF models shown as equations in the illustration. 
•••• The MDOF FRF-model represents Hij(ω) as the sum of 
SDOF FRFs, one for each mode within the frequency range 
of the measurement, where r is the mode number and m is 
the number of modes in the model. 
•••• The MDOF modal-parameter model defines Hij(ω) in 
terms of the pole locations and residues of the individual 
modes. This model indicates two significant properties of 
the modal parameters: 
• Modal frequency and damping are global properties. 

The pole location has only a mode number (r) and is 
independent of the DOFs used for the measurement. 

• The residue is a local property. The index (ijr) relates it 
to a particular combination of DOFs and a particular 
mode. 
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What is a Mode Shape? 
A mode shape is, as we said in the bell example on page 4, 
a deflection-pattern associated with a particular modal fre- 
quency - or pole location. It is neither tangible nor easy to 
observe. It is an abstract mathematical parameter which 
defines a deflection pattern as if that mode existed in isola- 
tion from all others in the structure. 
The actual physical displacement, at any point, will always 
be a combination of all the mode shapes of the structure. 
With harmonic excitation close to a modal frequency, 95% 
of the displacement may be due to that particular mode 
shape, but random excitation tends to produce an arbitrary 
"shuffling" of contributions from all the mode shapes. 
Nevertheless, a mode shape is an inherent dynamic proper- 
ty of a structure in "free" vibration (when no external forces 
are acting). It represents the relative displacements of all 
parts of the structure for that particular mode. 

•••• Sampled mode shapes →→→→ the mode shape vector 
Mode shapes are continuous functions which, in modal 
analysis, are sampled with a "spatial resolution" depending 
on the number of DOFs used. In general they are not mea- 
sured directly, but determined from a set of FRF measure- 
ments made between the DOFs. A sampled mode shape is 
represented by the mode shape vector {Ψ}r, where r is the 
mode number. 

•••• Modal displacement 
The elements Ψir of the mode shape vector are the relative 
displacements of each DOF (i). They are usually complex 
numbers describing both the magnitude and phase of the 
displacement. 
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Normal Modes and Complex Modes 

Modes can be divided into two classes 

• Normal modes 
These are characterized by the fact that all parts of the 
structure are moving either in phase, or 180° out of phase, 
with each other. The modal displacements Ψir are therefore 
real and are positive or negative. Normal mode shapes can 
be thought of as standing waves with fixed node lines. 

• Complex modes 
Complex modes can have any phase relationship between 
different parts of the structure. The modal displacements Ψir 
are complex and can have any phase value. Complex mode 
shapes can be considered as propagating waves with no 
stationary node lines. 

• Where to expect normal/complex modes 
The damping distribution in a structure determines whether 
the modes will be normal or complex. When a structure has 
very light or no damping it exhibits normal modes. If the 
damping is distributed in the same way as inertia and stiff- 
ness (proportional damping), we can also expect to find 
normal modes. 
Structures with very localized damping, such as automobile 
bodies with spot welds and shock absorbers, have complex 
modes. 

Warning. The mode shapes derived from poor measure- 
ments can indicate complex modes on structures where 
normal modes exist. 
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How Residues Relate to Mode Shapes 

On page 9 we saw that the residue is proportional to the 
magnitude of the FRF. At a modal frequency (ωdr) the mag- 
nitude is: 

It can be shown that the residue for a particular mode (r) is 
proportional to the product of the modal displacement Ψir at 
the response DOF, and Ψjr at the excitation DOF. 

 

The illustration shows the second mode of a cantilever 
beam, with excitation applied at DOF 8, and responses 
measured at three DOFs. Notice that the shape of the reso- 
nance curve is the same for each measurement, but that 
the magnitude is proportional to the modal displacements. 
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Scaling the Mode Shapes 
The mode shape vector {Ψ}r defines the relative displace- 
ment of each DOF, the values of the vector elements Ψir are 
not unique. 

From FRF measurements we determine the residues, which 
do have unique values. The relationship between a residue 
and the associated modal displacements, allows us to de- 
termine a scaling constant ar for each mode, such that: 

Rijr = ar · φir · φjr 

where φ  and φ  are the scaled modal displacements. For a ir jr
driving-point measurement, this gives us: 

Rjjr = ar · φjr
2 

The rigorous mathematical approach to modal analysis es- 
tablishes a relationship (given in the illustration) between 
the mode shape vector {φ}r and the modal mass Mr. If we 
apply this to the SDOF case (in which there is only one 
displacement and one mass), we can then evaluate ar. 

What is the modal mass? The modal mass is not related to 
the mass of the structure and cannot be measured. It is 
simply a mathematical device which can have any value ex- 
cept zero. We can choose its value and then calculate ar. 
For simplicity we will work with unit modal mass scaling 
(Mr = 1). 

Scaled mode shapes. From a driving-point measurement, 
we can obtain Rjjr for each mode. By using calculated ar. 
values, we can then obtain the scaled driving-point dis- 
placements φjr. From the response measurements, we are 
then able to scale the values of φir, and produce scaled 
mode shapes. 14 



 

Modal Coupling 
Modal coupling is a general term used to indicate how 
much of the response, at one modal frequency, is influ- 
enced by contributions from other modes. It can be ob- 
served in a displayed FRF around a modal frequency. 

•••• Lightly coupled modes - simple structures 
On a lightly damped structure the modes are well separated 
and distinct and are said to be lightly coupled. Such struc- 
tures behave as SDOF systems around the modal frequen- 
cies, and are known as simple structures. 

When testing this type of structure, simple methods give 
very reliable results. Simple structures are often encoun- 
tered in trouble-shooting since most noise, vibration and 
fatigue problems are associated with lightly damped reso- 
nances. 

•••• Heavily coupled modes - complex structures 
On a structure that has heavy damping or high modal den- 
sity, the FRFs do not display clearly distinctive modes. The 
modes are said to be heavily coupled and the response at 
any frequency is a combination of many modes. Complex 
structures can still be described using a discrete set of 
modes, but the techniques required to determine the modal 
parameters are more complicated. 
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What Does the Modal Description Assume? 

On the previous page we looked at the implications of high 
modal density and heavy damping. But neither of these two 
factors will prevent us from applying a modal description to 
a structure. They merely complicate the techniques re- 
quired. 

An assumption that we do have to make, however, is linear- 
ity. 

•••• Linearity 

We have to assume that the systems we test behave linear- 
ly so that the response is always proportional to the excita- 
tion. This assumption has three implications for Frequency 
Response Function (FRF) measurements. 

• Superposition. A measured FRF is not dependent on the 
type of excitation waveform used. A swept sinusoid will 
give the same result as a broadband excitation. 

• Homogeneity. A measured FRF is independent of the 
excitation level. 

• Reciprocity. In a linear mechanical system a particular 
symmetry exists which is described by Maxwell's Reci- 
procity Theorem. This implies that the FRF measured 
between any two DOFs is independent of which of them 
is used for excitation or response. 
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Practical Structures 

In general, structures will behave linearly for small deflec- 
tions. But linearity is often violated when deflections be- 
come large, so a modal description cannot be used to pre- 
dict catastrophic failure. 

We must also assume that our structures are: 

• Causal. They will not start to vibrate before they are 
excited. 

• Stable. The vibrations will die out when the excitation is 
removed. 

• Time-invariant. The dynamic characteristics will not 
change during the measurements. 

Note. The characteristics of some structures will change 
during a test: 

The characteristics of a lightweight structure may be 
changed by transducer loading. 

Over long tests periods, structural characteristics may 
be altered by temperature, or other environmental 
changes. 

Some structures may be changing continuously. The 
mass of a flying aircraft, for example, will decrease 
gradually as fuel is burned. 
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The Lumped-parameter Model and Modal Theory 

Much of the theory of modal analysis is based on the math- 
ematics of vectors and matrices. In this primer we do not 
intend to follow the rigorous mathematical route, but in or- 
der to to understand why modal analysis techniques are 
valid we need to look at a few theoretical points. 

•••• The lumped-parameter model 
This model represents an MDOF structure as a series of 
masses, connected together by springs and dampers. By 
applying Newton's Second Law we can generate a series of 
equations for the motion, one equation for each mass (each 
degree of freedom) in the model. 
The mathematical way to organize these equations is to use 
matrix notation. The mass matrix will contain single mass 
values, but the damping and stiffness matrices will have 
combinations of values which couple all the equations to- 
gether. This coupling indicates that a force applied to one 
mass will cause a reaction in all the others, making analysis 
of this model complicated. 
On a real structure, the mass, damping and stiffness distri- 
butions will not usually be known, but we can measure the 
pole locations (damping and modal frequencies) and the 
residues, and obtain the scaled mode shapes. With these 
parameters we can transform the lumped-parameter model 

•••• The modal transformation 
If we replace the physical coordinates, in the (matrix) equa- 
tion of motion, with the product of the modal matrix (all the 
scaled mode shape vectors as columns) and the modal co- 
ordinates, we make a transformation into another domain - 
the modal space. 
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The Modal Space 

Transformation into the modal space has a dramatic effect 
on the lumped-parameter model. The equations of motion 
become decoupled, and can be seen as a collection of in- 
dependent SDOF models, one for each mode in the MDOF 
model (each modal coordinate). 

Each model has a mass of unity (unit modal-mass), a 
damping constant equal to the bandwidth of the mode, and 
a spring constant equal to the square of the the undamped 
natural frequency. The individual models are excited by a 
modal force equal to the dot (scalar) product of the mode 
shape and the physical force vector (that is, the projection 
of the force on the mode shape). The modal force can be 
interpreted as the ability of a specific force distribution to 
excite a particular mode. 

We can now write a set of equations, in terms of the modal 
parameters, with solutions in modal coordinates. The equa- 
tion for each coordinate can be solved independently as an 
SDOF system. When the mode shapes are scaled with unit 
modal mass, the equations are in terms of the simple, mea- 
surable parameters of natural frequency, modal damping 
and scaled mode shape. 
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Specifying the Degrees of Freedom (DOFs) 

A free point generally has six degrees-of-freedom. Three 
translational, and three rotational. No suitable rotational- 
transducers are available, but the translational degrees of 
freedom are usually sufficient to describe the motion. For 
most practical structures, a set of regularly distributed 
measurement points in one or two directions is adequate. 

•••• How many DOFs are needed for a test? 

The number of DOFs required depends on the purpose of 
the test, on the structural geometry, and on the number of 
modes in the frequency range of interest. 

A test made simply to verify analytically predicted modal 
frequencies requires only a few DOFs. 

If the purpose of the test is to construct a mathematical 
model, then sufficient DOFs must be used for the measured 
mode shapes to be mutually orthogonal, or linearly inde- 
pendent. 

The illustration shows two examples of measurements 
made on a rectangular plate, one using four and the other 
using thirty DOFs. In the four DOF example, a maximum of 
four linearly independent modes are seen. The higher 
modes are simply the first four repeated. A model based on 
this measurement could only be used up to a frequency 
which included the first three or four modes. In the thirty 
DOF example, the shapes for the two highest modes are 
only roughly represented. 

Note. The number of DOFs has to be chosen to represent 
the total dynamics of the structure. It is the geometrical 
complexity of the mode shapes, rather than to the number 
of modes expected, which determines the number of DOFs 
required. 
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DOFs and the Mobility Matrix 

•••• Input/output combinations 

The illustration shows a structure with two defined DOFs, 
each of which is an input/output point for an FRF measure- 
ment. If we have n defined DOFs, the number of possible 
input/output combinations is n x n. 

•••• The mobility matrix 

The individual FRF measurements can be arranged as the 
elements of a matrix, known as the mobility matrix [H]. 
Each element Hij(ω) is a particular FRF measurement. 

Each row of the matrix contains FRFs with a common re- 
sponse DOF. while in each column they have a common 
excitation DOF. The diagonal of [H] contains a class of 
FRFs for which the response and excitation DOFs are the 
same. These are the driving point FRFs. The off-diagonal 
elements are transfer FRFs. 

22 

Note. The term mobility is used in a general sense and may 
represent compliance, mobility or accelerance. In models, 
[H] generally refers to compliance, but measurements are 
usually made in terms of accelerance (see Part 1 Mechani- 
cal Mobility Measurements ). 

• Minimum sufficient data 

The number of DOFs specified in a test can range from ten 
to several hundred. The matrix [H] can thus become enor- 
mous (when n = 100, [H] contains 10000 FRFs). 

Fortunately, reciprocity helps here and all the information 
for a linear mechanical structure is contained in either one 
complete row, or one complete column of [H]. The number 
of measurements needed is therefore equal to the number 
of specified DOFs. 
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Modal Test on a Simple Structure 
To examine the techniques used to extract the modal pa- 
rameters, let us look at a modal test on a simple structure, 
an example typical of a trouble-shooting problem. 

The example given in the illustration can be considered as 
a cantilever beam. The simplest instrumentation we can use 
is a dual-channel signal analyzer, with hammer excitation, 
and an accelerometer to measure the response signal. We 
will restrict the investigation to the first few bending modes, 
so that four DOFs aligned in the vertical direction will be 
sufficient. 

Let us assume that the instrumentation has been set up, 
preliminary adjustments made, and that a few initial mea- 
surements were taken to optimize the frequency range, 
weighting functions and input conditioning. 

•••• Determination of pole locations 

Any FRF will indicate that the beam has lightly coupled 
modes. Therefore structure behaves as a single-degree-of- 
freedom system around its modal frequencies, around 
which we can assume that all the response is due to that 
particular mode. 

From any measured FRF we can determine the modal fre- 
quencies and dampings, and thus obtain the pole locations. 
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• The modal frequencies are determined simply by observ- 
ing the maximum magnitudes on the FRF. 

• The modal dampings are not so simple to determine, 
and will often be the parameters measured with the great- 
est degree of uncertainty. 

One technique we can use to measure the damping is to 
find the -3dB bandwidths. On a lightly damped structure 
the resonances are sharp and the peaks are too narrow for 
accurate measurements of the bandwidths. This problem 
can often be overcome by making a zoom analysis to ob- 
tain sufficient frequency resolution for the measurements. 

Alternatively we can use a frequency weighting technique, 
in which each mode is isolated in turn. Application of both 
the Fourier and Hilbert transforms will then give the impulse 
response function of the mode. On a display showing loga- 
rithmic magnitude of the impulse response function the de- 
cay can be seen as a straight line. From this we can find 
the time τ taken for the magnitude to decay 8,7 dB. The 
decay rate σ is the reciprocal of the decay time, so that 
σ = 1/τ. 

From these measurements we can find the pole locations, 
but we also need to determine the associated mode 
shapes. 
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Mode Shapes from Quadrature Picking 

Remember that the equation for the SDOF model, evaluated 
at one of the modal frequencies ωdr, gives us: 

With more than one defined DOF we can substitute the resi- 
due by: 

giving 

Notice that A(ω) is an imaginary number at a modal fre- 
quency. This gives the basis for the quadrature picking 
technique, through which we can determine the mode 
shapes. 

The FRF appears to become purely imaginary at the modal 
frequency. Its amplitude is proportional to the modal dis- 
placement, and its sign is positive if displacement is in 
phase with the excitation. 

The mode shapes can be determined if we fix a response, 
or an excitation DOF as a reference and then make a set of 
measurements. The imaginary parts of the measured FRFs 
can be "picked" at the modal frequencies at which they 
represent the modal displacement for that specific DOF. 

In our example DOF # 2 is used as the response reference. 
A set of FRFs is then measured by exciting each of the four 
defined DOFs in turn. 

The four imaginary parts of the FRF for each modal fre- 
quency represent the associated mode shape. If the mea- 
surements were made with calibrated instrumentation, the 
mode shapes could then be scaled. 

But since our measurements are in accelerance we need to 
make a double differentiation to produce an accelerance 
model: 
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Parameter Estimation by Curve-fitting 

In the previous example the modes were lightly coupled, we 
determined the modal parameters simply by picking a num- 
ber of discrete values from the FRF measurements. 

When the measured data indicates heavily coupled modes 
or noise contamination, or when high accuracy is required 
for the estimation, we can make a computer-aided modal 
analysis. A curve-fitting technique can then be used to im- 
prove the modal parameter estimation. 

•••• Gold in ⇒⇒⇒⇒ gold out 

Many fine curve-fitting algorithms are available for modal 
analysis. But whichever parameter-estimation technique we 
use, the estimation must always be based on sound data 
which sufficiently represents the dynamics of the structure: 

• The most important part of modal testing is making the 
mobility measurements. 

• No curve-fitter can make reliable parameter estimates 
from poor measurements. 
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What is Curve-fitting? 
Curve-fitting is where the mathematical theory and practical 
measurements meet. The theory provides us with a mathe- 
matical parametric model for the theoretical FRF of a struc- 
ture, and our measurements give the real FRF. Curve-fitting 
is the analytical process to determine the mathematical pa- 
rameters which give the closest possible fit to the mea- 
sured data. 

Let us look at this process by examining an experiment to 
find the compliance (1/stiffness) of a helical spring. When 
mass loadings are applied, we can observe and plot the 
resulting deflections. If we assume a linear relationship be- 
tween force and deflection, then 

x = f · 1/k 

In this case we have only one unknown (1/k) so one pair of 
observations would be sufficient. But if we use all the ob- 
served data, we will get the best estimate of 1/k. 

If the weights are calibrated, then the applied force is accu- 
rately known. Any deviation from a straight line can only be 
due to errors in measuring the deflections (reading noise). 

•••• Method of least squares 
The method of least squares (MLS), shown in the illustra- 
tion, is one technique used to minimize the deviation be- 
tween the measured data and predicted values. It can be 
used on any mathematical model, including our SDOF and 
MDOF models. 

29 



Curve-fitters for Modal Analysis 
The process of estimating the modal parameters from the 
measured FRFs is very similar to the previous example. 

The method of least squares (MLS) can be used to improve 
the confidence of parameter estimations. For each mode 
we need to estimate two unknown complex numbers, the 
pole location and the residue, but for each FRF measure- 
ment the dual-channel analyzer gives us around 800 com- 
plex values. With this enormous amount of data to be ma- 
nipulated it is essential to use a computer to implement the 
estimations. The introduction of MLS curve-fitters takes us 
away from manual techniques and into computer-aided 
analysis. 

MLS procedures inherently reduce the effects of random 
noise in the measurements, they smooth the data. They will 
not generally reduce the effect of bias errors, such as any 
leakage or phase errors in the measurements, which would 
still cause erroneous parameter estimations. 

Many diverse types of curve-fitters are now available which 
are outside the scope of this discussion, but some general 
points are worth noting: 

The term "curve-fitting" arises from the general procedure 
where, after parameter estimation, an analytical curve is 
generated and superimposed on the measured data so that 
the operator can evaluate the fit. 

Good curve-fitters should be easy to use and have an inter- 
active dialogue with the operator. If there is a choice of 
curve-fitters, then the simplest one available should be cho- 
sen provided that it suits the measured data. This will usu- 
ally prove to be the best for the application, and the fastest 
to use. 
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The aim of curve-fitting is to extract reliable modal data 
from the measurements. Whilst a well-fitting curve may be 
necessary, it might not in itself be sufficient. The operator 
must judge the validity of the procedures. 

•••• SDOF curve-fitters 

SDOF curve-fitters are used for systems with lightly cou- 
pled modes, for which SDOF characteristics can be as- 
sumed around the modal frequencies. The operator must 
decide the frequency span around each modal frequency, 
over which this assumption can be held. This is always a 
compromise between including as many data points as pos- 
sible, to maximize the statistical estimation, and moving so 
far away from the resonance that other modes become 
dominant and the SDOF assumption becomes invalid. 

•••• MDOF curve-fitters 

MDOF curve-fitters are used with heavily coupled modes. 
The operator has to specify the frequency span over which 
the curve-fitter will seek the parameters. Some algorithms 
will always find sufficient modes to fit the curve, but some 
of them will simply be computational and have to be edited 
out by the operator. To a large extent, the results will de- 
pend on the user's skill and experience in specifying the 
correct number of modes for the model. 
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Local and Global Curve-fitters 
Curve-fitters can be classified as local or global. This clas- 
sification depends on how estimations of the modal param- 
eters are made from the data set of FRF measurements. 

•••• Local curve-fitters 

Most curve-fitters fall into this category. They fit the pole 
locations from one, or a few, measurements and fix them 
for the entire data set. The residues are then fitted for each 
individual FRF measurement using the locally found pole lo- 
cations. 

The reliability of local curve-fitters depends, in part, on the 
assumption that locally found pole locations are valid for 
the entire data set. This assumption may not always be 
true. Some of the FRF measurements may be difficult to fit 
because they contain strong local modes. An alternative es- 
timation procedure is provided by global curve-fitters. 

•••• Global curve-fitters 

Global curve-fitters estimate the pole location values in a 
least squares sense from all the measurements in the data 
set. This procedure enhances the global modes and attenu- 
ates purely local modes which may be found in a few FRFs. 
The curve-fitter then uses the global pole location values to 
fit the residues for each individual measurement. 
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Computer-aided Modal Testing 
In many applications of modal analysis, a large number of 
DOFs have to be defined, and an equivalent number of FRF 
measurements made. Computer aid is therefore essential 
for parameter estimation and documentation. Small desk- 
top computers with sufficient power for this application are 
now available, together with versatile user-friendly pro- 
grams which guide the user through all the steps in the 
measurement and analysis procedures. 

Modal test on a minibus body 

Let us look at a typical computer-aided modal test, and 
examine each phase of the test in detail. 

•••• The objectives of the test are to study the first two elas- 
tic vertical modes of a minibus body to verify analytical 
calculations and to predict its vibration response due to 
some assumed excitation forces. 

•••• The test equipment is a typical Brüel&Kjær structural 
analysis system with computer-aided modal analysis soft- 
ware. 

• The procedure can be divided into four steps: 

Step 1 - Setting up the modal test 

Step 2 - Making the measurements 

Step 3 - Parameter estimation by curve-fitting 

Step 4 - Documentation of the test 
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Step 1 - Setting up the Modal Test 
•••• Choosing the DOFs. We expect simple mode shapes for 
the first two elastic vertical modes. So we can limit the 
number of DOFs to 18, measured in the vertical direction at 
equally spaced points on the lower frame of the body. 

•••• Suspension of the test object. To study the dynamics of 
the body we try to establish the so-called free-free condi- 
tion. One method is to suspend the body by elastic cords. 

•••• Choice of excitation. To cover the low frequency range, 
and linearize any non-linear behaviour, we can use random- 
waveform excitation. The excitation waveform is taken from 
the signal generator of the analyzer and used, after power 
amplification, to drive an electrodynamic vibration exciter. 

•••• Position/connection of exciter and force transducer. 
The best position for the exciter, in this case, is at a corner 
of the body where both the symmetric and asymmetric 
modes will exhibit maximum motion. 

The force transducer is stud-mounted onto the body frame 
(through a threaded hole) and connected to the exciter by a 
4 mm nylon stinger. The exciter is placed directly on the 
ground where the reaction force will be absorbed. 

•••• Mounting the response transducer. As the test structure 
is heavy and has a smooth surface and the frequency range 
of interest is low, an accelerometer on a mounting magnet 
can be used. This mounting technique makes it easy to 
move the accelerometer between the DOFs. 

•••• Transducer conditioning and calibration. The transducer 
signals are conditioned by charge amplifiers, into which the 
transducer calibration values have been set. This ensures 
that the signals supplied to the analyzer are calibrated. A 
mass-ratio calibration check will then verify the calibration 
of the total measurement chain. 34 



 

•••• Setting up the analyzer. The optimal measurement pa- 
rameters for this application are: 

Measurement: Dual spectrum averaging mode. 

Trigger: Free run - with the trigger disabled, the analyzer 
will accept data at the maximum rate. 

Averaging: Linear averaging - the number of averages is 
set arbitrarily high. We can stop the process when the esti- 
mates become satisfactorily smooth. 

Frequency span: 100 Hz. 

Center frequency: Baseband - frequency span will start at 
0 Hz. 

Weighting: Hanning - the optimal window for random exci- 
tation. 

Ch.A and Ch.B: The input attenuators, filters and calibra- 
tion values are set in engineering units. 

Generator: Random. 

•••• To check the measurement set-up we can: 

1. Make a driving point measurement, to ensure that: 

• we have a satisfactorily flat force spectrum 

• we have explainable coherence 

• we have positive (accelerance) quadrature peaks 

• we have an anti-resonance between resonances 

2. Make a few driving point measurements at other DOFs, 
to check that all the modes of interest are seen at the cho- 
sen driving point. For this second check, it is more conve- 
nient to use hammer excitation. 
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Step 2 - Making the Measurements 
In this phase, a set of FRF measurements between the exci- 
tation DOF and all the other defined DOFs is made and 
stored. 

The computer helps to manage the data. It transfers the 
measurements from the analyzer and tells us when each 
transfer is completed, so that the next transducer location 
can be selected. The computer also creates the data files, 
and stores the data on a mass storage medium (disk). The 
label for each stored measurement records information 
concerning the DOF measured, the analyzer set-up, calibra- 
tion, date and time, and any comments we wish to include. 

The operator plays an important role by continuously 
checking the measurements. By watching the coherence 
and convergence of the FRF on the analyzer display, the 
operator can decide when to accept the measurements, or 
when to make corrections. 

The program has provision for automation of this process, 
but this is not recommended: 
• The measurement phase is the most critical and impor- 

tant part of the whole operation. The analysis depends 
primarily on the accuracy obtained at this stage. 

36 



Step 3 - Parameter Estimation by Curve-fitting 

When the FRF measurements are completed, we can begin 
the data reduction process to extract the modal parame- 
ters. This has three phases: 

1) Interactive curve-fitting ⇒⇒⇒⇒ frequency and damping 

This phase is a manually controlled curve-fit. The opera- 
tor has to decide which FRF measurement is the best 
for the application, which modes are of interest, which 
curve-fitter to use and over what frequency range. Dur- 
ing this phase, the global parameters (the modal fre- 
quencies and dampings) are determined. Simultaneous- 
ly, the computer writes a "recipe", the autofit table. This 
table shows how the operator performed the first curve- 
fit, and is subsequently used by the computer to fit the 
rest of the data set. 

2) Auto curve-fitting ⇒⇒⇒⇒ modal residues 

The computer fits all the measured data in an automatic 
sequence. The residues are estimated and saved in a 
fitdata table. 

3) Sort ⇒⇒⇒⇒ mode shapes 

In the sort procedure, information contained within the 
fitdata table is converted into (scaled) mode shape data, 
and saved in the shape table. The computer also trans- 
forms the data from local to global coordinates, and 
adds motion to non-measured DOFs expressed as linear 
combinations of measured DOF motions. 
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Step 4 - Documentation of the Test 

Documentation can be in the form of a printed result table. 
But for large data sets graphic presentations are much 
more powerful. 

• The geometrical model 

From the definition of the modal model, no geometrical in- 
formation (apart from that of the defined DOFs) is included 
in the dynamic description. For documentation purposes, 
we need to include some geometry so that the pictures pro- 
duced will resemble the test object. 

In this test we measured only vertical DOFs in one plane 
(the body frame). This relatively simple geometric structure 
can be described in a rectangular coordinate system (by 
updating the coordinate table). To produce a picture, we 
specify how to draw lines between the coordinates by up- 
dating the display sequence table. 

• Animation 

Mode shapes can be defined as a sampled set of relative 
deflections over the structure, represented by the mode 
shape vector. The principle of animation may be visualized 
as a cartoon strip showing the mode shape drawn with a 
harmonically varying scale, and displayed in a continuous 
sequence on the computer display. Optional viewing facili- 
ties provide; rotation around three axes, zoom and panora- 
ma, variable animation amplitude and speed, an overlay of 
different modes or the undeformed geometry. Animation is 
a very informative presentation for mode shapes. 

• Mode shape hard-copy 

A digital plotter can be used to make hard-copy plots of 
the mode shapes. 38 



 

• Improved geometrical model 
Our simple geometric model of the lower body frame can 
be extended to include coordinates on the minibus roof. 
The resulting display will then be a box structure giving a 
more realistic representation of the minibus body. 

There is a provision in the software for including unmea- 
sured DOFs in a constraints-equation table. The constraint 
is that the motion of an unmeasured DOF must be a con- 
stant multiplied by the motion of a measured DOF. 

In our example we may assume that, for the two modes of 
interest, the displacements of the roof and the lower frame 
are identical. We can then enter the unmeasured DOFs 
(1AZ to 18AZ), with constant values of 1,00, into the con- 
straints table and modify the display-sequence table. 

The computer will add motions to the unmeasured DOFs 
during the sort procedure, and display the new geometrical 
model illustrated. 
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The Dynamic Modal Model 

• The ultimate result of the modal test 

The direct result of a modal test is the visualized mode 
shapes and the associated resonances. But beyond that, we 
have an instrument with which we can make a complete 
dynamic mathematical model of the test object. 

• What is a dynamic model? 

A dynamic model is a mathematical formulation of the dy- 
namic properties of the structure in a discrete set of points 
and directions. It is not a model of the physical structure. 
For example, if a structure had only one input and one out- 
put, a model could be: 

X(ω) = H(ω) · F(ω) 

where the parameter in the model is an FRF. 

a What is a modal model? 

A modal model is a generalized dynamic model: 

{X}=[H] · {F} 

where the vector {X} is a list of the vibration spectra in the 
specified DOFs. {F} is a list of the excitation spectra for 
the same DOFs, and [H] is a matrix of all the possible 
input/output FRF combinations. This is called a modal mod- 
el because [H] can be calculated from the estimated modal 
parameters. 

The advantage of this formulation is that the parameters 
are measurable. Although we only measured one row, or 
one column, of [H], we can calculate any other element 
from a knowledge of the mode shapes, the modal frequen- 
cies and the dampings. 40 



 

Checking and Applying the Model 
Because it is relatively easy to compare shapes and fre- 
quencies, qualitative verification of analytical solutions can 
easily be made from the estimated modal parameters. The 
quantitative potential of the model, however, is also worth 
considering. 

• Adequacy of the model 

For the modal model to be useful in a quantitative sense, it 
must be a sufficiently precise and complete representation 
of the structure. 

• Checking precision by FRF synthesis 

If the modal test and calibration checks have been made 
correctly, then our modal data will give an accurate de- 
scription of the dynamic properties. A simple procedure can 
be used to test the accuracy. 

During the test, we measured either one complete row (im- 
pact test), or one complete column (attached exciter) of the 
FRF matrix. From this measured data, the computer pro- 
gram can be used to synthesize a non-measured FRF. If we 
then measure the corresponding FRF on the test object, 
and compare the measurement with the prediction, we can 
see how accurate and adequate our modal model is. 

Accuracy can be observed around the modal frequencies, 
where the peaks should fit exactly. The adequacy must be 
judged by the operator on the basis of how well the two 
functions compare between modes, and in relation to the 
future application of the model. 
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Considerations of Model Completeness 

From a theoretical point of view, the modal model formula- 
tion is exact since no approximations are introduced. But 
how good is the measured/estimated model? Assuming that 
our initial assumptions of linearity, etc., hold true, then 
there is a potential pitfall due to truncation. 

• Mode truncation 
As we have to limit the frequency range of a test, not all 
the modes of the structure are included. In practice, we 
often ignore the rigid body modes, at the very low frequen- 
cies, and also modes present only at local parts of the 
structure. We also try to keep the frequency range as low 
as possible to obtain maximum frequency resolution. This 
means that we truncate the frequency domain description, 
which can lead to reduced accuracy of the model particu- 
larly between the resonances. 

• Spatial truncation 
We work with a finite discrete set of DOFs to describe a 
continuous structure. But each point on the structure can 
theoretically move in six directions. The lack of measure- 
ments in some of these directions, and the finite number of 
measurement points used, represent a spatial truncation. 

Let us look again at our modal test. The minibus body was 
described on the basis of a set of vertical measurements. 
From the results obtained, the second rigid body mode (tor- 
sion) looks more like shear since no information on hori- 
zontal motion was measured. 

A model cannot be used to predict the effect of forces or 
modifications at points/directions where no measurements 
were made. 
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Computer Simulations: What if? 
Computer simulations are the advanced applications of the 
precise and complete modal model. Simulations can help us 
to answer many of the "What if?" questions applicable to 
optimizing prototype design, problem-solving, and studying 
the structure under estimated operational conditions. 

Response simulation can predict the vibration response of 
the structure if different excitation forces are applied at any 
of the defined DOFs. 

Modification simulation can be used to predict what will 
happen to the model in terms of its modal parameters if 
physical modifications (mass, stiffness, damping and sub- 
structures) are applied. 

Verification. The predicted response can be converted to 
noise, strain, fatigue etc., for comparison with reference 
data, design criteria or standards. If the results are not sat- 
isfactory, the engineer will then have to formulate a reme- 
dy. 

Simulation in the design cycle 

The cyclical process of: 

can be repeated as many times as necessary. 

Due to the high speed of computers and software the time 
taken for a complete cycle is only a few minutes, a true 
optimization is therefore possible in a very short time. 
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Response Simulation 

To predict a physical vibration response, we need to load 
the modal model with a specific set of simulated physical 
forces. 

•••• Excitation for simulations 

Two types of excitation, sinusoidal and broadband, can be 
used. They require two different kinds of simulation. 

• Sinusoidal excitation 

Sinusoidal excitation is realistic for many applications. In 
operational environments, structures are often exposed to 
the sinusoidal excitation of free forces, or to moments pro- 
duced by rotating components. Implementation is simple. 
We need a list of the physical deflections {x}ω0 (the Opera- 
tional Deflection Shape) due to excitation at one DOF. With 
only one frequency present, there is just one line in the 
response spectrum - one value per DOF. 

If more than one excitation force is required, the response 
will be the sum of the individual responses. A rotating un- 
balance, for example, can be modelled as two orthogonal 
forces, 90° out of phase. 

Sinusoidal animation 

Animation is achieved by calculating the deformation vec- 
tor, using the the same basic routine as for the mode shape 
animation. If more than one frequency is used, true anima- 
tion is not feasible, but a motion pattern representing the 
vibration envelope can be shown. 
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• Broadband excitation 
Broadband simulation is used for random forcing inputs. 
This could be required, for example, to predict comfort in a 
car driven over a specific (standard) surface, or to predict 
component fatigue in a turbulent environment. 

The Force Autospectrum GFF can be obtained from calcula- 
tions, from standards, or from measurements. The software 
can then synthesize FRFs between the force input DOF and 
any other DOF in the modal model. 

With this type of excitation, we are dealing with statistical 
parameters (rather than discrete values), and the results 
have to be evaluated by using statistical inference. 
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Modification Simulation 

•••• Problem-solving: "What if?" 

Many noise and vibration problems found in either the de- 
sign phase, or the operation, of a structure are caused by 
resonances. Resonances can cause mechanical amplifica- 
tion of normal operational forces, resulting in an unaccept- 
able structural response. 

In such cases, the engineering task is to suggest a solution. 
This will often be a structural modification (in mass, stiff- 
ness or damping) aimed at shifting the resonance. One path 
to a solution is through trial and error, but this tends to be 
expensive in time, material costs and quality. 

With a modal model available, alternative modifications can 
be evaluated using a computer. The "What if?" approach 
can be made many times before the hardware modifica- 
tions are implemented and finally tested. 

•••• Operational modifications: "What, When?" 

A similar problem exists when the actual operation of the 
structure influences its dynamics. 

"What" happens "When" the structure: 

• takes payload (a mass modification)? 

• connects to ground (a stiffness modification)? 

• connects to another structure (sub-structuring)? 

By using a modal model, the effect of these events can be 
predicted by computer simulation. The process of predict- 
ing the modified dynamic properties produces a new modal 
model - the very instrument required to predict the new 
vibration response. 46 



 

Applying Modifications 

•••• Modification calculations 

We do not generally know the spatial parameters for the 
test structure, only the parameters in the modal coordi- 
nates. A physical modification, described locally in spatial 
parameters, will spread its effect into all the modal coordi- 
nates through the modal transform. 

The equation for the modified structure is a standard eigen- 
value problem, the solution of which gives the new modal 
frequencies and dampings, and the new mode shapes. 

Since all calculations are based on the modal model, modi- 
fications can only be simulated at measurement points, and 
in measured directions. No approximations are used so the 
method is exact. Its accuracy depends entirely on the quali- 
ty of the measured model. 
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Implementing Modifications 

•••• The building blocks in a modification program are: 

• Point masses 

• Massless, linear springs 

• Viscous dampers 

In addition, some compound elements may be available: 

• Tuned absorbers 

• Beam elements (rib stiffners) 

• Sub-structures 

•••• Software facilities 

Modification software-packages provide the user with a 
universal tool which can be used in a variety of ways. The 
direct application has already been discussed, but it is also 
possible to work from the other direction. We can enter a 
set of desired modal frequencies and let computer calculate 
the modifications required. 

•••• Modelling physical modifications 

Practical modifications cannot be simulated as a point 
mass or a massless spring, but they have to be modelled 
by combining these basic elements. 

A rod welded between two DOFs in the structure might be 
modelled by one stiffener in the main axis. If lateral motion 
is present, another two stiffeners, perpendicular to each 
other in the horizontal plane, will improve the model. As 
physical rods are not massless, the model can be further 
improved by making two mass modifications, with 1/3 of 
the physical mass of the rod at each of the two DOFs. 48 



 Case Story: An Application of Synthesized FRFs 
•••• A ship vibration problem 

Under normal operating conditions, severe instrument read- 
ing problems were experienced on the bridge of the ship. 
The immediate cause of the problem was excessive vibra- 
tions at the bridge. 

An analysis of the operational vibration signal indicated 
that the response increased exponentially with propeller 
speed. The vibration spectrum showed a concentration of 
energy at the propeller blade-passing frequency, which 
identified the propeller as the primary source of the vibra- 
tion. 

The problem then was to determine where the energy was 
entering the structure. The potential sources were; the stern 
bearing (two degrees of freedom), the thrust-bearing (one 
degree of freedom), the gearbox (two degree of freedom), 
or pressure fluctuations integrated over the hull in the pro- 
peller vicinity. 

•••• The investigation 

It was decided to base the investigation on a modal test 
with a limited number of DOFs. Excitation was implemented 
by an eccentric mass exciter, welded to the stern deck. The 
exciter was run in fast frequency sweeps yielding a relative- 
ly flat energy spectral density while the FRF measurements 
were made. 
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•••• The results 

None of the measured FRFs showed strong resonances at 
the problem frequency (8,2 Hz), not even when the response 
was measured at the bridge. But the operational forces 
could not have been entering the structure at the upper 
deck level, therefore on the basis of the estimated modal 
parameters, the FRFs between the bridge and all of the po- 
tential input DOFs were synthesized. 

The problem was identified when the synthesized FRF be- 
tween the thrust bearing and the bridge was found to ex- 
hibit an extremely high mobility at 8,2 Hz. 

•••• The solution 

A stiffening modification to the thrust-bearing structure re- 
duced the mobility by a factor of five. Subsequent measure- 
ments demonstrated that the operational vibration level had 
been reduced by almost the same factor. 
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Symbols and Notation 

SIGNAL ANALYSIS 

Time Domain 

T  Time 
τ  Time delay 
f(t)  Force signal 
x(t)  Displacement signal 

 
Velocity signal 
Acceleration signal 

Frequency Domain 
f   = ω/2π Frequency (Hz) 
ω  = 2πf Angular velocity or frequency 

(rad/sec) 
F(f)  Force Spectrum 
X(f) Displacement Spectrum 

SYSTEM ANALYSIS 

Time Domain 

h(τ)  Impulse response function 

Frequency Domain 
γ2(ω)  Coherence function estimate 
H(ω)  Frequency response function of system 
H1(ω)  Frequency response function estimate 
H2(ω)  Frequency response function estimate 

General notation  
Fourier transform 
Hilbert transform 
Laplace transform 52 

PHYSICAL PARAMETERS 

m  Mass 
k  Stiffness 
c  Damping coefficient 
cc  Critical damping coefficient 
ω  Angular velocity 

MODAL PARAMETERS 

i  Response DOF 
j  Excitation DOF 
m  Number of modes 
r  Index for the rth mode 
ω0r  Undamped natural frequency for rth mode 
ωdr  Damped natural frequency for rth mode 
ζr  Damping ratio for rth mode 
φ  Modal displacement 
{φ}r  Scaled mode shape vector for rth mode 
{Ψ}r Unsealed mode shape vector for rth mode 
qr(t) Modal coordinate for rth mode as a 

 function of time 
Qr(f) Modal coordinate for rth mode as a 

 function of frequency 
Γr(t) Generalized modal force in time domain 
Γr(f) Generalized modal force in frequency domain 
σr  Decay rate for rth mode 
pr  Pole location for rth mode 
ar  Scaling factor for rth mode 
Rijr  Residue rth mode between DOF i and j 



 
 

UNITS 

N Newtons 
m Metres 
s Seconds 
kg Kilograms 
Pa Pascals 

ABBREVIATIONS 

DOF Degree of Freedom 
SDOF Single Degree of Freedom 
MDOF Multiple Degree of Freedom 
SDM Structural Dynamics Modification 
FRS Forced Response Simulation 
TA Tuned absorber 
FRF Frequency Response Function 

MATHEMATICAL SYMBOLS 
 

 Angle or Phase angle 
Σ Sum 
( )* Denotes the complex conjugate 
j Indicates an imaginary entity 
(^) Indicates an estimate 
# Number 
lm[ ] Imaginary part 
Re[ ] Real part 
| | Magnitude 
≈ Approximately equal to 
∝ Proportional to 
* Indicates convolution 
— Modified function or parameter 
x, y, z Coordinate axes 

MATRIX NOTATION 

[m] Mass matrix 
[k] Stiffness matrix 
[c] Damping matrix 
[H] Frequency response matrix 
[ I ] Indentity matrix 
[∆M] Mass modification matrix 
[∆C] Damping modification matrix 
[∆K] Stiffness modification matrix 
[Φ] Scaled modal matrix of system model 
[  ]T Denotes the transpose matrix 
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We hope this booklet has answered many of your questions and 
will continue to serve as a handy reference. If you have other ques- 
tions about structural testing techniques or instrumentation, please 
contact one of our local representatives or write directly to: 

Brüel & Kjær 
2850 Nærum 
Denmark 
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