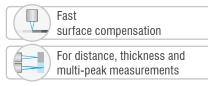


More Precision

confocalDT // Confocal chromatic sensor system



Confocal chromatic displacement and thickness measurements **confocalDT**

Highest precision in confocal chromatic displacement and thickness measurements

The confocalDT sensors product range stands for the highest precision and dynamics in confocal chromatic measurement technology. A large number of sensors and different interfaces can be used in versatile measurement tasks, e.g., in the semiconductor industry, glass industry, medical engineering and machine building.

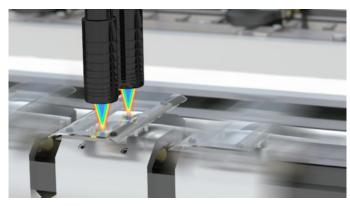
Curved lenses

Overview confocalDT

Compact systems		Measuring range	Measurement mode	Page
confocalDT IFD2410	Next generation confocal sensor system	1.0 mm 6.0 mm	Distance measurement Thickness measurements	10 - 11
confocalDT IFD2415	Best in class - Next-generation confocal sensor system	1.0 mm 10.0 mm	Distance measurement Thickness measurements Multi-peak measurement	12 - 13
confocalDT IFD2411	Compact confocal measuring system	1.0 mm 6.0 mm	Distance measurement Thickness measurements	14 - 15

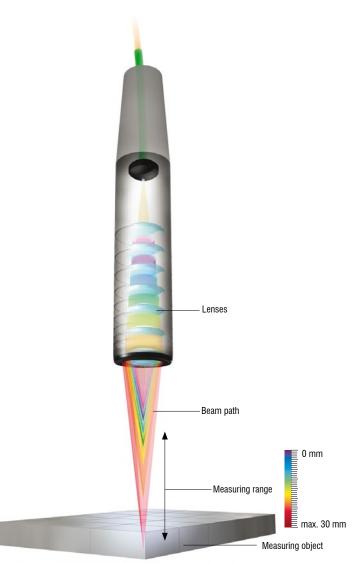
Sensors		Measuring range	Measurement direction	Measurement mode	Page
confocalDT IFS2402	Confocal chromatic miniature sensors ø4 mm	0.5 mm 3.5 mm		Distance measurement	16 - 17
confocalDT IFS2403	Confocal chromatic hybrid sensors ø8 mm	0.4 mm 10 mm		Distance measurement Thickness measurements	18 - 19
confocalDT IFS2404	Confocal chromatic sensors ø12 mm	2 mm		Distance measurement Thickness measurements	20
confocalDT IFS2405	Precise confocal sensors ø27 - 62 mm	0.3 mm 30 mm		Distance measurement Thickness measurements	21 - 23
confocalDT IFS2406	Confocal chromatic sensors for displacement and thickness measurements ø20 - 27 mm	2.5 mm 10 mm		Distance measurement Thickness measurements	24 - 25
confocalDT IFS2407	High precision sensors for displacement and thickness measurements ø12 - 54 mm	0.1 mm 3 mm		Distance measurement Thickness measurements	26 - 27

Each sensor can be operated with every confocalDT controller.


Controller		Channels	Measuring rate	Page
confocalDT IFC242x	Confocal controller for industrial applications	1 or 2	up to 10 kHz	28 - 29
confocalDT IFC246x	Light-intensive controller for high speed measurements	1 or 2	up to 30 kHz	30 - 31

Accessories	Page
System design	32 - 33
Sensor solutions and vacuum feedthroughs	34
Mounting adapter	35
Adjustment adapter	36 - 39
Cables	40 - 41
Interface modules	42 - 43

Measuring principle and fields of application **confocalDT**


The confocal chromatic measuring principle

Polychromatic white light is focused onto the target surface by a multilens optical system. The special lens arrangeent splits the white light into monochromatic wavelengths by controlled chromatic aberration. To each wavelength, a specific distance is assigned by factory calibration. Only the wavelength which is exactly focused on the target is used for the measurement. An optical arrangement images the light reflected onto a light sensitive sensor element. This sensor element detects the corresponding spectral color and evaluates it. In the case of multi-peak measurements, several distance points are evaluated accordingly.

High measuring rate for dynamic measurement tasks

The confocalDT systems offer high measuring rates for measurement tasks with high dynamics. The controller dynamically regulates the exposure of the CCD line. This exposure control compensates for color and reflectivity changes of the measuring object in order to increase the measurement accuracy at high measuring rates.

Set up and configuration of controller and sensors is handled in a user-friendly web interface via Ethernet connection. No additional software is required. For thickness measurements, materials are stored in an editable materials database.

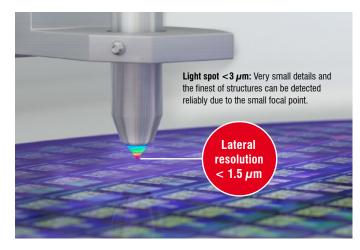
Compact sensors for restricted installation spaces

The compact design with diameters from 4 mm enables integration in restricted spaces. With the 90° models, the required installation depth is again significantly reduced.

Robust optical fibers for all applications

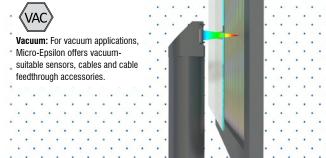
Standard fiber optics

Drag-chain suitable fiber optics


Protective hose for mechanical stress

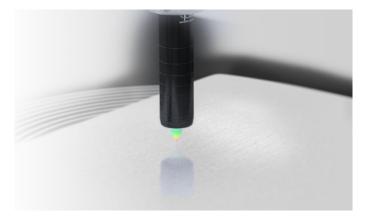
Robot-suitable fiber optics

Vacuum / UHV model



Smallest light spot for high lateral resolution

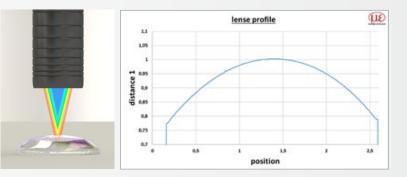
The confocalDT sensors are available with different aperture angles. A large aperture angle with a high numerical aperture (NA number) enables a small light spot (X-Y resolution) as well as a high Z-axis resolution, allowing the smallest details to be detected with high precision. The size of the light spot remains almost constant over the entire measuring range.

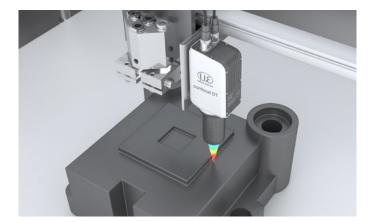

Large measuring angle – ideal for curved and structured surfaces The confocalDT IFS sensors tolerate a large measuring angle up to 48°. Therefore, curved and structured surfaces can be detected reliably to generate stable signals.

Vacuum applications

The confocalDT sensors consist of passive components and do not emit heat. For the use in vacuum, special sensors, cables and other accessories are available.

Absolute distance measurement **confocalDT**




High-precision displacement and distance measurements on almost all types of surface

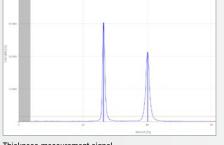
The confocal sensor systems from Micro-Epsilon are used for highresolution displacement and distance measurements. Due to the innovative technology, measurements can be performed on both diffuse and specular surfaces with high stability. The high measuring rate also allows for high speed processes to be monitored reliably.

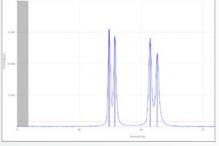
Distance measurement on transparent objects

High-precision distance measurement is required for contour measurement or positioning of glass lenses. The confocalDT sensors detect curved surfaces with a resolution of up to 18 nm. Thanks to their high measuring rate, the transparent targets can be measured at high speed.

High precision distance control

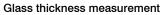
In 3D printing of complex components as well as in PCB printing, precise positioning with submicrometer accuracy is essential. Here, confocal sensors are used. These detect the distance with the highest precision and at the same time a high measuring rate in order to be able to monitor even dynamic processes.



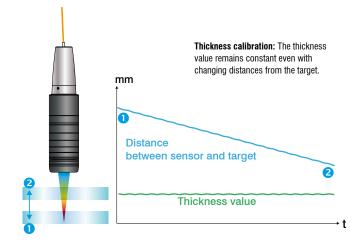

Mounting adapter for fine adjustment

To achieve orthogonal alignment of the sensor for high-precision distance measurements, a mounting adapter is available for fine adjustment.

Precise thickness measurement **confocalDT**


Thickness measurement signal

Signal with multi-layer thickness measurements (max. 6 peaks)


Thickness measurement of transparent materials in the micron range

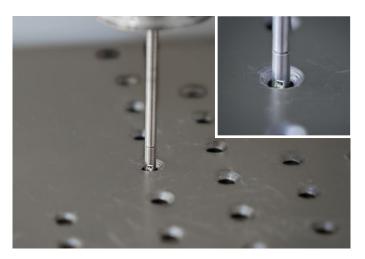
The confocalDT sensors enable thickness measurements of transparent materials. A sensor detects the material thickness with micrometer precision. Thanks to the integrated multi-layer measurement, the thickness of multi-layer objects such as laminated glass can be evaluated.

The confocalDT sensors are ideally suitable for one-sided thickness measurement of transparent objects such as bottles. Therefore, thicknesses between 5 μ m and 30 mm can be measured. Even curved contours such as the bottle neck or bottoms are precisely detected. The color of the bottle does not matter for this measurement. This allows 100% end-of-line quality control to be performed inline.

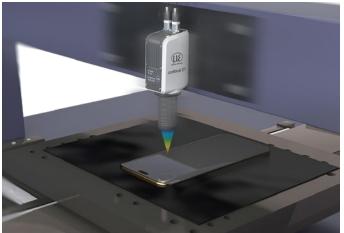
Thickness calibration for precise thickness measurements regardless of distance

Changing material thickness and a varying distance between the target and the sensor produce faulty measurement values. Therefore, confocalDT controllers from Micro-Epsilon offer a thickness calibration feature. By selecting the respective target material, the distance-dependent error is automatically compensated for which enables to achieve the highest possible measurement accuracy.

Mounting adapter for two-sided thickness measurements

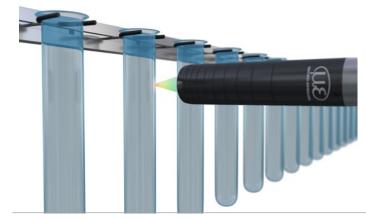

The JMA-Thickness mounting adapter is used for the congruent alignment of two sensors.

Applications confocalDT


Thickness measurement of displays and flat glass Glass sheets for the production of displays require a homogeneous thickness profile. Confocal chromatic sensors from Micro-Epsilon determine the thickness without making contact from one side.

Recommended sensors: IFS2405

Restricted installation space


Miniature sensors with a diameter of 4 mm are suitable for measurements in confined installation spaces, e.g., for the inspection of boreholes. Furthermore, the 90° version of these sensors enables to measure the finest interior contours. *Recommended sensors: IFS2402*

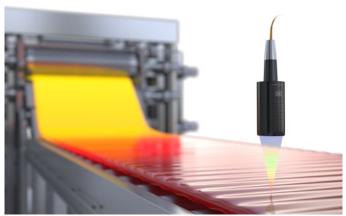
Coordinate measuring machines

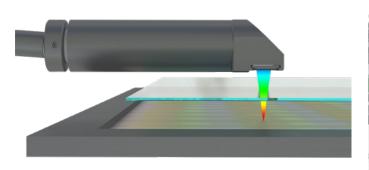
The compact confocalDT 2410 / 2415 models have an integrated controller. Since no optical fiber is required, the space-saving sensor is particularly suitable for dynamic applications such as in measuring machines.

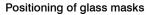
Recommended sensors: IFD2410 / IFS2415

Wall thickness measurement of container glass

Wall thickness distribution is a crucial quality criterion for container glass. In order to determine the glass thickness of the bottom and the walls, confocal chromatic sensors from Micro-Epsilon are used. Measurements are performed without contact and at a high measuring rate.


Recommended sensors: IFS2406

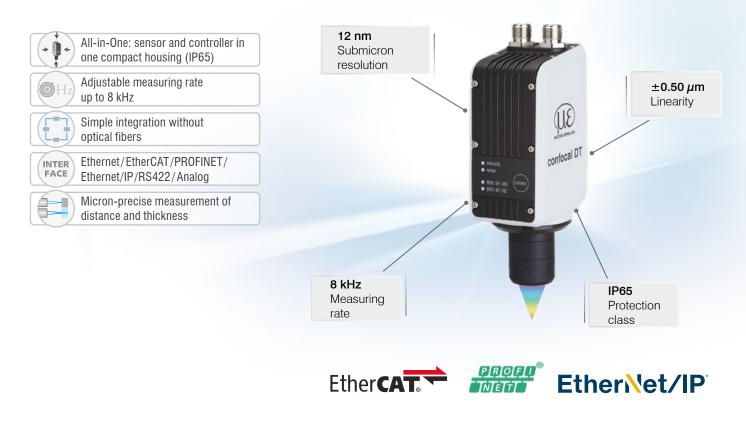

Displacement and distance measurements in 3D printing machines


The compact controllers of the confocalDT 2411 series are used for distance control in industrial printers. The sensor system impresses with a measuring rate of up to 8 kHz and a resolution of up to 12 nm. Due to their compact design, the controllers can be optimally integrated in the control cabinet.

Recommended sensors: IFD2411

Measuring on hot glass Confocal sensors can also be used for the measurement of hot glass. The large offset distance allows for the sensor to be mounted from a safe distance to the hot glass. *Recommended sensors: IFS2405-28*

Confocal chromatic sensors monitor the gap between the mask and the glass. Thanks to the 90° design, the sensors can be integrated in an extremely space-saving manner.



Thickness measurement on the star wheel Fast dual-channel thickness measurement of glass bottles in the industrial production process.

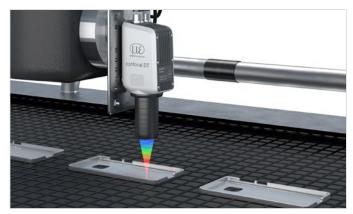
Recommended sensors: IFS2406-10

Recommended sensors: IFS2406/90-2,5

Confocal chromatic sensor system with integrated controller confocalDT IFD2410

All-in-One: compact confocal sensor with optimal price/performance ratio

The confocalDT IFD2410 is an innovative confocal sensor with integrated controller. The space-saving IP65-housing enables fast integration into plant equipment and machines as no optical fiber is required. This makes the IFD2410 ideally suited to high precision distance and thickness measurements in industrial series applications.

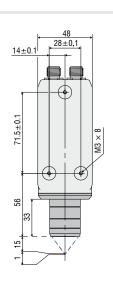

The active exposure regulation of the CCD line enables fast and accurate compensation of varying surfaces even in dynamic measurement processes up to 8 kHz. Based on its excellent price/ performance ratio, the confocalDT IFD2410 sets a new benchmark in precise confocal measurement technology.

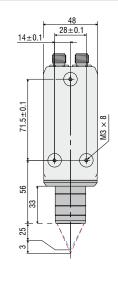
Intelligent technology meets high performance and user-friendliness

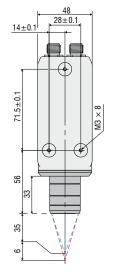
In Ethernet mode, the confocalDT IFD2410 can be set via the intuitive web interface. Industrial Ethernet ensures that the settings are automatically applied to the PLC environment. This eliminates time-consuming setting efforts in the programming environment.

Fast, precise and compact

Its high performance and compact housing make this sensor ideally suitable for series applications in production lines and machines. These include inline inspection and coordinate measuring machines, inline thickness monitoring of flat glass and container glass as well as testing electronic components.

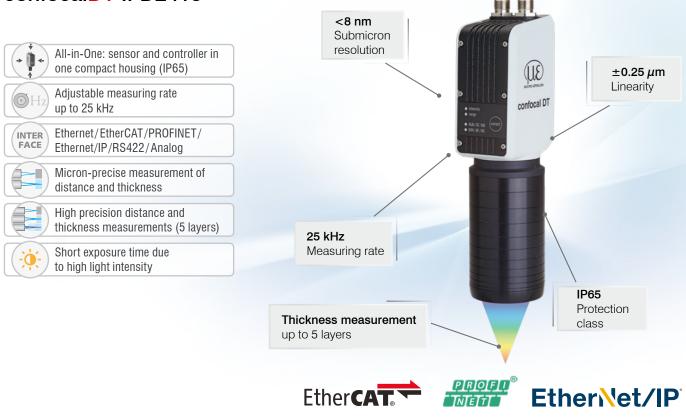

Inline measurement of smartphone housings




Simple parameter set up via integrated web interface

Dimensions in mm,

	not to scale.					
Model		IFD2410-1	IFD2410-3	IFD2410-6		
Measuring range		1.0 mm	3.0 mm	6.0 mm		
Start of measuring range	approx.	approx. 15 mm	approx. 25 mm	approx. 35 mm		
Resolution	static 1)	< 12 nm	< 36 nm	< 80 nm		
Resolution	dynamic ²⁾	< 50 nm	< 125 nm	< 250 nm		
Measuring rate		CO	ntinuously adjustable from 100 Hz to 8 kH	łz		
Linearity ³⁾ Displacem	nent and distance	$<\pm0.5\mu{ m m}$	$<\pm1.5\mu{ m m}$	$<\pm3.0\mu{ m m}$		
Linearity /	Thickness	$<\pm1.0\mu{ m m}$	$<\pm3.0\mu{ m m}$	$<\pm$ 6.0 μ m		
Light source			internal white LED			
Permissible ambient light			30,000 lx			
Light spot diameter 4)						
Measuring angle 5)		±25° ±19° ±10°				
Numerical aperture (NA)		0.45	0.45 0.35 0.18			
Min. target thickness		0.05 mm	0.15 mm 0.3 mm			
Target material		Reflective,	diffuse as well as transparent surfaces (e	e.g. glass)		
Supply voltage		24 VDC ±10 %				
Power consumption			<5 W (24 V)			
Signal input		2x HTL/TTL multifund	(A+, A-, B+, B-, index); 3 x encoders (A+ tion inputs: trigger in, slave in, zero settin on input: trigger in, sync in, master/slave, r	g, mastering, teach;		
Digital interface		EtherCAT / PROFI	NET / EtherNet/IP / RS422 / Ethernet (for p	parameter setting)		
Analog output		4 20	0 mA / 0 5 V / 0 10 V (16 bit D/A conv	verter)		
Switching output			Error1-Out, Error2-Out			
Digital output			sync out			
Connection		17	supply, encoder, EtherCAT, PROFINET, Eth 7-pin M12 plug for I/O analog and encode / 6 m / 9 m / 15 m (see accessories for su	Pr		
Installation		radial clampir	ng, threaded hole, mounting adapter (see	accessories)		
Temperature repai	Storage		-20 +70 °C			
Temperature range	Operation		+5 +50 °C			
Shock (DIN EN 60068-2-27)			15g / 6 ms in XY axis, 1000 shocks each			
Vibration (DIN EN 60068-2-6)		20	g / 20 500 Hz in XY axis, 10 cycles eacl	h		
Protection close (DIN EN COE)	Sensor		IP64 (front)			
Protection class (DIN EN 60529	Controller		IP65			
Material			Aluminum housing, passive cooling			
Weight		490 g	490 g	490 g		
Control and indicator elements			ection, two adjustable functions and reset olor LEDs for Intensity, Range, RUN and E			
AU 1 1 1 1 1 1 1 1 1 1 1 1	(04 000)					


All data at constant ambient temperature (24 ± 2 °C) 9 Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

²⁾ RMS noise relates to mid of measuring range (1 kHz)

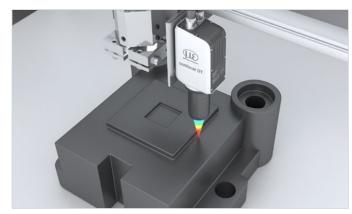
³⁾ Maximum deviation from reference system over the entire measuring range, measured on front surface of ND filter

⁴ In the mid of the measuring range
 ⁵ Maximum sensor tilt angle that produces a usable signal on polished glass (n = 1.5) in the mid of the measuring range. The accuracy decreases when approaching the limit values.

High performance sensor system with integrated controller confocalDT IFD2415

All-in-One: compact confocal sensor with high performance

The confocalDT IFD2415 is a powerful confocal sensor with integrated controller. The space-saving IP65-housing enables fast integration into plant equipment and machines as no optical fiber is required. Furthermore, the IFD2415 is ideally suited to high precision distance and thickness measurements in industrial series applications. In addition, the sensor can be used with transparent materials for multi-layer thickness measurements of up to 5 layers.


The active exposure time regulation of the CCD line enables fast and stable measurements of varying surfaces even in dynamic measurement processes up to 25 kHz. The measuring system is also characterized by high luminous intensity which enables fast and reliable measurements even on darker surfaces.

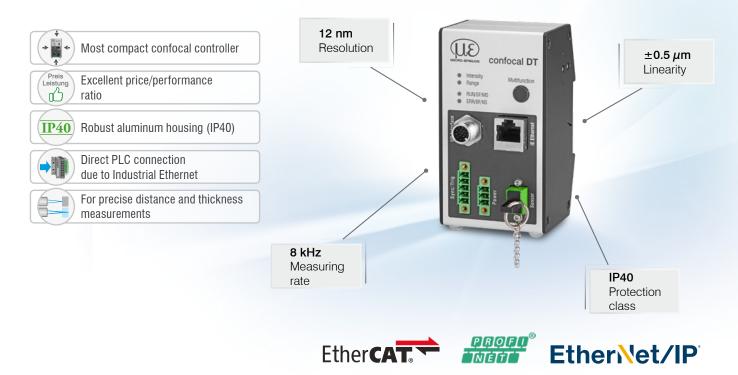
Intelligent technology meets high performance and user-friendliness

In Ethernet mode, the confocalDT IFD2415 can be set via the intuitive web interface. Industrial Ethernet ensures that the settings are automatically applied to the PLC environment. This eliminates time-consuming setting efforts in the programming environment.

Fast, precise and compact

The unique combination of sensor and controller combined with excellent performance and high measuring rate make the confocalDT IFD2415 the best in its class. This compact sensor can be used in series applications such as, e.g., in inline inspection machines, robots, 3D printers and coordinate measuring machines.

Displacement and distance measurement in 3D printing


Simple parameter set up via integrated web interface

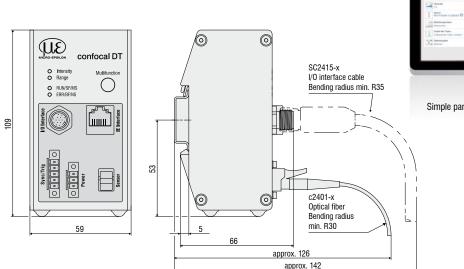
-	Dimensions in mm, not to scale.			
Model		IFD2415-1	IFD2415-3	IFD2415-10
Measuring range		1.0 mm	3.0 mm	10.0 mm
Start of measuring range	approx.	approx. 10 mm	approx. 20 mm	approx. 50 mm
Resolution	static 1)	< 8 nm	< 15 nm	< 36 nm
Resolution	dynamic ²⁾	< 38 nm	< 80 nm	< 204 nm
Measuring rate		con	tinuously adjustable from 100 Hz to 25 k	Hz
Linearity ³⁾	cement and distance	$<\pm0.25\mu{ m m}$	$<\pm0.75\mu{ m m}$	$<\pm2.5\mu{ m m}$
Linearity	Thickness	$<\pm0.5\mu{ m m}$	$<\pm1.5\mu{ m m}$	$<\pm5.0\mu{ m m}$
Light source			internal white LED	
Permissible ambient light			30,000 lx	
Light spot diameter 4)		8 <i>µ</i> m	9 <i>µ</i> m	16 <i>µ</i> m
Measuring angle 5)		$\pm 30^{\circ}$	$\pm 24^{\circ}$	±17°
Numerical aperture (NA)		0.55	0.45	0.3
Min. target thickness		0.05 mm	0.15 mm	0.5 mm
Target material		Reflective,	diffuse as well as transparent surfaces (e	e.g. glass)
Supply voltage			24 VDC ±10 %	
Power consumption			<7W (24 V)	
Signal input		2x HTL/TTL multi-functi	A+, A-, B+, B-, index); 3x encoders (A+ on inputs: trigger in, slave in, zero setting n input: trigger in, sync in, master/slave,	g, mastering, teach-in;
Digital interface			NET / Ethernet/IP / RS422 / Ethernet (for p	0,
Analog output		4 20	mA / 0 5 V / 0 10 V (16 bit D/A con	verter)
Switching output			Error1-Out, Error2-Out	
Digital output			sync out	
Connection		17-pi	upply, encoder, EtherCAT, PROFINET, Et n M12 connector for I/O analog and enco / 9 m / 15 m possible (see accessories f	oder
Installation		radial clamping	g, threaded hole, mounting adapter (see	accessories)
Temperature rango	Storage		-20 +70 °C	
Temperature range	Operation		+5 +50 °C	
Shock (DIN EN 60068-2-27))		15g / 6 ms in XY axis, 1000 shocks each	
Vibration (DIN EN 60068-2-6	6)	2g) / 20 500 Hz in XY axis, 10 cycles eac	h
Protection class	Sensor		IP64 (front)	
(DIN EN 60529)	Controller		IP65	
Material			Aluminum housing, passive cooling	
Weight		approx. 500 g	approx. 600 g	approx. 800 g
Control and indicator eleme	ents		ction, two adjustable functions and reset blor LEDs for Intensity, Range, RUN and I	
All data at constant ambient tem	porature $(24 \pm 2 ^{\circ}\text{C})$	4X CC	The store of the structure of the store of t	_1111

All data at constant ambient temperature (24 ±2 °C) ¹⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat ²⁾ RMS noise relates to mid of measuring range (1 kHz) ³⁾ Maximum deviation from reference system over the entire measuring range, measured on front surface of ND filter

^a In the mid of the measuring range ^b Maximum sensor tilt angle that produces a usable signal on polished glass (n = 1.5) in the mid of the measuring range. The accuracy decreases when approaching the limit values.

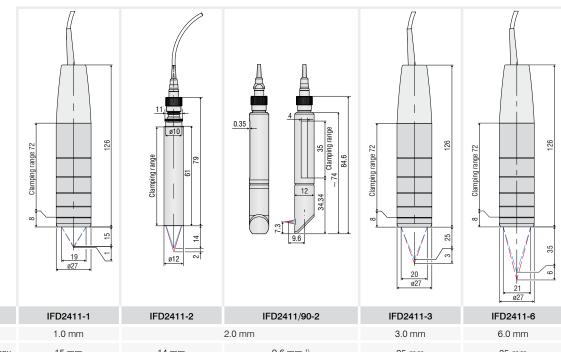
Compact confocal measuring system for industrial series applications confocalDT IFD2411

Most compact design with highest performance and integrated Industrial Ethernet


The compact confocal IFD2411 measuring system is a factorycalibrated measuring system for industrial series applications. As well as displacement and distance measurements, the system enables even thickness measurements of transparent materials. The IFD2411 confocal chromatic measuring system is a complete channel which contains a controller and an adapted sensor with measuring ranges of 1 mm, 2 mm, 3 mm and 6 mm. Due to its favorable price/performance ratio, this measuring system is ideal for series applications.

Thanks to the integrated Industrial Ethernet interface, you integrate the controller directly into the PLC. In Ethernet mode, the controller can be set via the intuitive web interface. Industrial Ethernet ensures that the settings are automatically applied to the PLC environment. This eliminates time-consuming setting efforts in the programming environment.

Fast, precise and robust


With an adjustable measuring rate of up to 8 kHz and sub-micrometer resolution of up to 12 nm, the IFD2411 is suitable for numerous measurement tasks. The active exposure regulation of the CCD line enables fast and reliable measurements on varying surfaces.

Thanks to its extremely compact design and its robust IP40 aluminum housing, the controller of the IFD2411 measuring system can be integrated in almost all existing plants and systems. Integrated DIN rail mounting enables fast installation in the control cabinet.

Simple parameter set up via integrated web interface

Model		IFD2411-1	IFD2411-2	411-2 IFD2411/90-2 IFD2411-3 IFD2411-6			
Measuring range		1.0 mm		2.0 mm	3.0 mm	6.0 mm	
Start of measuring range	approx.	15 mm	14 mm	9.6 mm ¹⁾	25 mm	35 mm	
Resolution	static 2)	< 12 nm		< 40 nm	< 40 nm	< 80 nm	
Resolution	dynamic 3)	< 50 nm		< 125 nm	< 125 nm	< 250 nm	
Measuring rate			conti	nuously adjustable from 100 Hz to	8 kHz		
Linearity 4)	Distance	$<\pm0.3\mu{ m m}$	<	< ±1.0 µm	$<\pm$ 0.9 μ m	$<\pm$ 1.8 μ m	
Linearity	Thickness	$<\pm0.6\mu{ m m}$	<	< ±2.0 µm	$<\pm$ 1.8 μ m	$<\pm$ 3.6 μ m	
Multi-peak measur	ement			1 layer			
Light source				internal white LED			
No. of characteristi	ic curves	up to	10 characteristic curves	for different sensors per channel,	selection via table in the m	nenu	
Permissible ambier	nt light 5)			30,000 lx			
Light spot diamete	r	12 <i>µ</i> m		10 µm	18 µm	24 <i>µ</i> m	
Max. measuring an	ngle 6)	$\pm 25^{\circ}$		±12°	$\pm 19^{\circ}$	±10°	
Numerical aperture	e (NA)	0.45		0.25	0.35	0.18	
Min. target thicknes	SS ⁷⁾	0.05 mm		0.1 mm	0.15 mm	0.3 mm	
Target material			reflective, dif	fuse as well as transparent surface	es (e.g. glass)		
Synchronization				yes			
Supply voltage				24 VDC ±10 %			
Power consumptio	n			< 7 W (24V)			
Signal input			sync-in ,	/ trig-in; 1x encoder (A+, A-, B+, B	3-, index)		
Digital interface			EtherCAT	/ PROFINET / Ethernet/IP / RS422	/ Ethernet		
Analog output			Current: 4 20 m	nA; voltage: 0 5V & 0 10 V (16	δ bit D/A converter)		
Digital output				sync-out			
	Optical	pli	uggable optical fiber via B	E2000 socket, length 2 m 50 m,	min. bending radius 30 m	m	
Connection	Electrical	RJ45 so	17-pin M1	trip; 5- or 6-pin I/O terminal strip (n 2 connector for RS422, analog an therCAT / PROFINET / Ethernet/IP	d encoder;	1 100 m)	
Installation				Free-standing, DIN rail mounting			
Temperature	Storage			-20 +70 °C			
range	Operation		Sensor	r: +5 +70 °C; controller: +5	+50 °C		
Shock (DIN EN 600	068-2-27)		15g	g / 6 ms in XYZ axis, 1000 shocks e	each		
Vibration (DIN EN 6	60068-2-6)		2g / 2	20 500 Hz in XYZ axis, 10 cycles	each		
Protection class	Sensor			IP64			
(DIN EN 60529)	Controller			IP40			
Material				Aluminum			
Weight	Sensor	approx. 100 g	approx. 20 g	approx. 30 g	approx. 100 g	approx. 100 g	
Weight	Controller			approx. 335 g			
No. of measureme	nt channels			1			
Control and indicat	or elements	Multifuncti		ection, two adjustable functions an r LEDs for Intensity, Range, RUN a	, ,	after 10 s;	
ECO Eull Casta Outr							

FSO = Full Scale Output

² Natro f measuring range measured from sensor axis ² Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

³⁾ RMS noise relates to mid of measuring range (1 kHz)

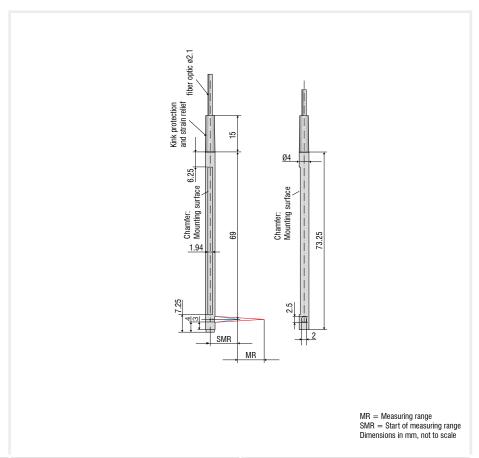
⁶ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.
 ⁶ Illuminant: light bulb

^{e)} Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

 $^{\prime\prime}$ Glass sheet with refractive index n = 1.5 in midrange

Confocal chromatic miniature sensors confocalDT IFS2402

	distance ents		MR protection and strain relief ther optic o2.1	MR = Measuring range SMR = Start of measuring range Dimensions in mm, not to scale
Model		IFS2402-0.5	IFS2402-1,5	IFS2402-4
Measuring range		0.5 mm	1.5 mm	3.5 mm
Start of measuring range	e approx.	1.7 mm	0.9 mm	1.9 mm
Resolution	static 1)	16 nm	60 nm	100 nm
Resolution	dynamic 2)	48 nm	192 nm	480 nm
Linearity ³⁾	Displacement and distance	$< \pm 0.2 \mu\text{m}$	$<\pm1.2\mu m$	$< \pm 3 \mu m$
Light spot diameter		10 <i>µ</i> m	20 <i>µ</i> m	20 <i>µ</i> m
Max. measuring angle 4)		$\pm 18^{\circ}$	±5°	$\pm 3^{\circ}$
Numerical aperture (NA)		0.40	0.20	0.10
Target material		reflective, c	iffuse as well as transparent surfaces (e.g. glass) 5)
Connection			iber 2 m with E2000/APC connector; ex ding radius: static 30 mm; dynamic 40	
Installation		Cla	mping (mounting adapter see accesso	ries)
-	Storage		-20 +70 °C	
Temperature range	Operation		+5 +70 °C	
Shock (DIN EN 60068-2-	27)		15g / 6 ms in XY axis, 1000 shocks eac	ı
Vibration (DIN EN 60068	-2-6)	20	/ 20 500 Hz in XY axis, 10 cycles ea	ch
Protection class (DIN EN	l 60529)		IP64 (front)	
Material			Stainless steel housing, glass lenses	
Weight			approx. 186 g (incl. optical fiber)	


¹⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

²⁾ RMS noise relates to mid of measuring range (1 kHz)

³⁾ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

⁴⁾ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

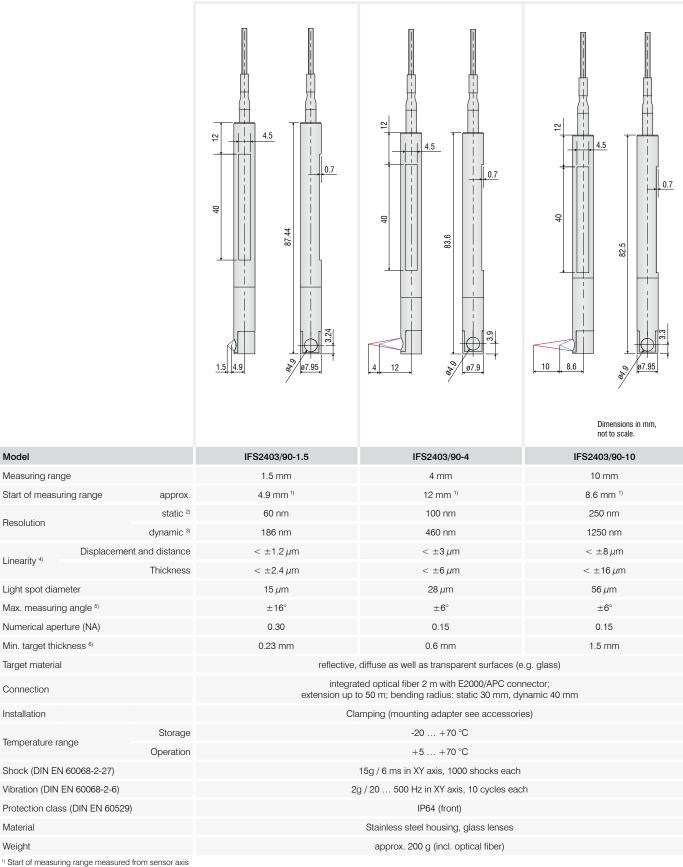
⁹ No thickness measurement possible Distance measurement only possible if thickness of glass > measuring range. Measurements on metal only possible to a limited extent.

Model		IFS2402/90-1,5	IFS2402/90-4	
Measuring range		1.5 mm	2.5 mm	
Start of measuring range	e approx.	2.5 mm ¹⁾	2.5 mm ¹⁾	
Resolution	static ²⁾	60 nm	100 nm	
Resolution	dynamic 3)	192 nm	480 nm	
Linearity 4)	Displacement and distance	$<\pm1.2\mu{ m m}$	$<\pm3\mu{ m m}$	
Light spot diameter		20 <i>µ</i> m	20 <i>µ</i> m	
Max. measuring angle 5)		±5°	$\pm 3^{\circ}$	
Numerical aperture		0.20	0.10	
Target material		reflective, diffuse as well as transparent surfaces (e.g. glass) 6)		
Connection		integrated optical fiber 2 m with E2000/APC connector; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm		
Installation		Clamping (mounting adapter see accessories)		
Temperature range	Storage	-20 +70 °C		
lemperature range	Operation	+5	+70 °C	
Shock (DIN EN 60068-2-	-27)	15g / 6 ms in XY axis	s, 1000 shocks each	
Vibration (DIN EN 60068	-2-6)	2g / 20 500 Hz in X	Y axis, 10 cycles each	
Protection class (DIN EN	1 60529)	IP.	40	
Material		Stainless steel hou	ising, glass lenses	
Weight		approx. 186 g (ii	ncl. optical fiber)	

 $^{\rm 0}$ Start of measuring range measured from sensor axis $^{\rm 2i}$ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

³⁾ RMS noise relates to mid of measuring range (1 kHz)

⁴ All data at constant ambient temperature (25 ± 1 °C) against optical flat; specifications can change when measuring different objects.
⁵ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
⁶ No thickness measurement possible Distance measurement only possible if thickness of glass > measuring range. Measurements on metal only possible to a limited extent.


Confocal chromatic hybrid sensors confocalDT IFS2403

		Kink protection and strain relief fiber optic ø2.1		
Hybrid sensors ø8 mm with axial or radial beam path Submicron resolution For one-sided thickness measurements For precise distance measurements Small light spot		MR SMR and s	79	MR = Measuring range
Model	IFS2403-0.4	IFS2403-1.5	IFS2403-4	SMR = Start of measuring range Dimensions in mm, not to scale IFS2403-10
Measuring range	0.4 mm	1.5 mm	4 mm	10 mm

Model		IF52403-0.4 IF52403-1.5 IF52403-4 IF52403-10				
Measuring range		0.4 mm	1.5 mm	4 mm	10 mm	
Start of measuring range	approx.	2.5 mm	8 mm	14.7 mm	11 mm	
Resolution	static 1)	16 nm	60 nm	100 nm	250 nm	
Resolution	dynamic 2)	47 nm	186 nm	460 nm	1250 nm	
Linearity ³⁾	Displacement and distance	$<\pm0.3\mu{ m m}$	< ±1.2 µm	$<\pm3\mu{ m m}$	$<\pm8\mu{ m m}$	
Linearity -	Thickness	$<\pm0.6\mu{ m m}$	< ±2.4 µm	$<\pm 6\mu { m m}$	$<\pm16\mu{ m m}$	
Light spot diameter		9 <i>µ</i> m	15 <i>µ</i> m	28 µm	56 <i>µ</i> m	
Max. measuring angle $^{\scriptscriptstyle 4)}$		$\pm 20^{\circ}$ $\pm 16^{\circ}$ $\pm 6^{\circ}$ $\pm 6^{\circ}$				
Numerical aperture (NA)	aperture (NA) 0.50 0.30 0.15 0.				0.15	
Min. target thickness 5)		0.06 mm 0.23 mm 0.6 mm 1.5 mm				
Target material		re	eflective, diffuse as well as tra	insparent surfaces (e.g. glass	s)	
Connection		exten	integrated optical fiber 2 m sion up to 50 m; bending rad		0 mm	
Installation			Clamping (mounting ac	lapter see accessories)		
Tomporatura ranga	Storage		-20	+70 °C		
Temperature range	Operation		+5	+70 °C		
Shock (DIN EN 60068-2-	27)		15g / 6 ms in XY axis	s, 1000 shocks each		
Vibration (DIN EN 60068	-2-6)		2g / 20 500 Hz in X	Y axis, 10 cycles each		
Protection class (DIN EN	60529)		IP64 ((front)		
Material			Stainless steel hou	ising, glass lenses		
Weight			approx. 200 g (ir	ncl. optical fiber)		
Average from 512 values at 1 kHz, in the mid of the measuring range onto antical flat						

^a Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat
 ^a RMS noise relates to mid of measuring range (1 kHz)
 ^a All data at constant ambient temperature (25 ± 1 °C) against optical flat; specifications can change when measuring different objects.
 ^a Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

 $^{\mbox{\tiny 5)}}$ Glass sheet with refractive index n = 1.5 in midrange

²⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

³⁾ RMS noise relates to mid of measuring range (1 kHz)

⁴⁾ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

⁹⁾ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

 $^{\scriptscriptstyle 6)}$ Glass sheet with refractive index n = 1.5 in midrange

Model

Resolution

Linearity 4)

Target material

Connection

Installation

Material

Weight

Confocal chromatic sensors confocalDT IFS2404

Image: Compact sensors ø12 r Image: Compact sensors ø12 r <td< th=""><th></th><th>Clamping range</th><th></th><th>The scale.</th></td<>		Clamping range		The scale.
Model		IFS2404-2	IFS2404/90-2	IFS2404-2(001)
Measuring range		2 mm	2 mm	2 mm
Start of measuring range	approx.	14 mm 40 nm	9.6 mm ¹⁾ 40 nm	14 mm
Resolution	static 2)	40 nm		10
	dunamia 3)			40 nm
Diaplocom	dynamic 3)	125 nm	125 nm	125 nm
Linearity 4)	ent and distance	125 nm < ±1 μm	125 nm < ±1 μm	125 nm < ±1 μm
Linearity 4)	,	125 nm < ±1 μm < ±2 μm	125 nm < ±1 μm < ±2 μm	125 nm < ±1 μm < ±2 μm
Linearity 4) Light spot diameter	ent and distance	125 nm < ±1 μm < ±2 μm 10 μm	125 nm < ±1 μm < ±2 μm 10 μm	125 nm < ±1 μm < ±2 μm 10 μm
Linearity 4) Light spot diameter Max. tilt angle 5)	ent and distance	125 nm < ±1 μm < ±2 μm 10 μm ±12°	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA)	ent and distance	125 nm < $\pm 1 \mu \text{m}$ < $\pm 2 \mu \text{m}$ $10 \mu \text{m}$ $\pm 12^{\circ}$ 0.25	125 nm < ±1 μm < ±2 μm 10 μm	125 nm < $\pm 1 \mu \text{m}$ < $\pm 2 \mu \text{m}$ $10 \mu \text{m}$ $\pm 12^{\circ}$ 0.25
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾	ent and distance	125 nm $< \pm 1 \mu m$ $< \pm 2 \mu m$ 10 μm $\pm 12^{\circ}$ 0.25 0.1 mm	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm	125 nm $< \pm 1 \mu$ m $< \pm 2 \mu$ m 10 μ m $\pm 12^{\circ}$ 0.25 0.1 mm
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA)	ent and distance	125 nm $< \pm 1 \mu m$ $< \pm 2 \mu m$ 10 μm $\pm 12^{\circ}$ 0.25 0.1 mm reflect pluggable optical fiber vistandard length	125 nm < $\pm 1 \mu \text{m}$ < $\pm 2 \mu \text{m}$ $10 \mu \text{m}$ $\pm 12^{\circ}$ 0.25	125 nm $< \pm 1 \mu$ m $< \pm 2 \mu$ m 10 μ m $\pm 12^{\circ}$ 0.25 0.1 mm
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾ Target material	ent and distance	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm etive, diffuse as well as transparent surfaces (model) as transparent s	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾ Target material Connection Installation	ent and distance	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm tive, diffuse as well as transparent surfaces (all FC socket, type CS242-x/CS2401; 2 m; extension up to 50 m; tatic 30 mm, dynamic 40 mm	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾ Target material Connection	ent and distance Thickness	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	$\begin{array}{c} 125 \text{ nm} \\ < \pm 1 \mu\text{m} \\ < \pm 2 \mu\text{m} \\ 10 \mu\text{m} \\ \pm 12^{\circ} \\ 0.25 \\ 0.1 \text{ mm} \end{array}$ tive, diffuse as well as transparent surfaces (or the second	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾ Target material Connection Installation	ent and distance Thickness	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm tive, diffuse as well as transparent surfaces (a FC socket, type CS242-x/CS2401; 2 m; extension up to 50 m; tatic 30 mm, dynamic 40 mm Clamping (mounting adapter see accessorit -20 +70 °C	125 nm $< \pm 1 \mu$ m $< \pm 2 \mu$ m 10 μ m $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm es)
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾ Target material Connection Installation Temperature range	ent and distance Thickness	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm etive, diffuse as well as transparent surfaces (or the second	125 nm $< \pm 1 \mu$ m $< \pm 2 \mu$ m 10 μ m $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm es)
Linearity ⁴) Light spot diameter Max. tilt angle ⁵) Numerical aperture (NA) Min. target thickness ⁶) Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27)	ent and distance Thickness	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm tive, diffuse as well as transparent surfaces (a FC socket, type CS242-x/CS2401; 12 m; extension up to 50 m; 1	125 nm $< \pm 1 \mu$ m $< \pm 2 \mu$ m 10 μ m $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm es)
Linearity ⁴⁾ Light spot diameter Max. tilt angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾ Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27) Vibration (DIN EN 60068-2-6)	ent and distance Thickness	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 nm reflection of the standard length stand	125 nm $< \pm 1 \mu\text{m}$ $< \pm 2 \mu\text{m}$ $10 \mu\text{m}$ $\pm 12^{\circ}$ 0.25 0.1 mm tive, diffuse as well as transparent surfaces (all FC socket, type CS242-x/CS2401; all	125 nm $< \pm 1 \mu$ m $< \pm 2 \mu$ m 10 μ m $\pm 12^{\circ}$ 0.25 0.1 mm e.g. glass) pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm, dynamic 40 mm es)

²⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

²¹ Average from 512 values at 1 km2, in the find of the find soft in the measuring range on to optical hat
³¹ RMS noise relates to mid of measuring range (1 kH2)
⁴¹ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.
⁵¹ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
⁶³ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

⁷⁾ Sensor weight without optical fiber

Confocal sensors with high precision confocalDT IFS2405

NocielIFS2405-0.3IFS2405-1IFS2405-3Measuring range0.3 mm1 mm3 mmStart of measuring rangeapprox.6 mm10 mm20 mmStart of measuring rangeapprox.6 mm10 mm20 mm $Pesolution$ static.14 nm8 nm15 nm $Pesolution$ dynamic.218 nm38 nm80 nm $Pesolution$ Displacement and distance< $\pm 0.1 \mu$ m< $\pm 0.25 \mu$ m< $\pm 0.75 \mu$ m $Pesolution$ Displacement and distance< $\pm 0.2 \mu$ m< $\pm 0.5 \mu$ m< $\pm 0.75 \mu$ m $Pesolution$ Displacement and distance< $\pm 0.2 \mu$ m< $\pm 1.5 \mu$ m< $\pm 1.5 \mu$ m $PeroteconThickness< \pm 0.2 \mum< \pm 1.5 \mum< \pm 1.5 \mumPeroteconThickness< \pm 0.2 \mum< \pm 1.5 \mum< \pm 1.5 \mumMax. measuring angle 4< \pm 34^{\circ}\pm 30^{\circ}\pm 24^{\circ}Numerical aperture (NA)0.600.550.45Numerical aperture (NA)0.600.55 mm0.45Min. target thickness 50.015 mm0.05 mm0.15 mmTarget materialreflective, diffuse as well as transparent surfaces (e.g. glass)InstallationClamping (mounting adapter see access-true)Installationextension up to 50 m; berture rangeOperation\pm 20^{\circ}\pm 20^{\circ}Shock (DIN EN 60068-2-27)\pm 50^{\circ}Vibration (DIN EN 60068-2-6)2g/20500 Hz in XY axis, 10 oyoles ext$	ons in mm, zale.
Start of measuring rangeapprox.6 mm10 mm20 mmResolutionstatic 104 nm8 nm15 nmMesolutiondynamic 2018 nm38 nm80 nmLinearity 30Displacement and distance $< \pm 0.1 \mu m$ $< \pm 0.25 \mu m$ $< \pm 0.75 \mu m$ Linearity 30Thickness $< \pm 0.2 \mu m$ $< \pm 0.5 \mu m$ $< \pm 1.5 \mu m$ Light spot diameter6 μm 8 μm 9 μm Max. measuring angle 4 $= 4.04 \mu m$ 9 μm Max. measuring angle 4 $= 5.04 m$ $= 4.03 0^{\circ}$ $= 24.03 0^{\circ}$ Numerical aperture (NA)0.600.550.45Min. target thickness 50.015 mm0.05 mm0.15 mmArget material0.015 mm0.05 mm0.15 mmConnectionsettersion up to 50 m; settersion up to 50 m; setter	-3
$\frac{\operatorname{static}^{1}}{\operatorname{dynamic}^{2n}} \frac{\operatorname{4 nm}}{\operatorname{18 nm}} \qquad \operatorname{8 nm} \qquad \operatorname{15 nm}}{\operatorname{8 0 nm}} \\ \frac{\operatorname{Displacement and distance}}{\operatorname{16 nm}} \qquad \operatorname{4 \pm 0.25 \mum} \qquad \operatorname{4 \pm 0.75 \mum}} \\ \frac{\operatorname{Displacement and distance}}{\operatorname{16 nm}} \qquad \operatorname{4 \pm 0.2 \mum} \qquad \operatorname{4 \pm 0.5 \mum} \qquad \operatorname{4 \pm 0.75 \mum}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{10 nm} \qquad$	
Resolutiondynamic 318 nm38 nm80 nmLinearity 3Displacement and distance $< \pm 0.1 \mu$ m $< \pm 0.25 \mu$ m $< \pm 0.75 \mu$ mLinearity 3Thickness $< \pm 0.2 \mu$ m $< \pm 0.5 \mu$ m $< \pm 1.5 \mu$ mLight spot diameter 6μ m 8μ m 9μ mMax. measuring angle 4 $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA)0.600.550.45Min. target thickness 50.015 mm0.05 mm0.15 mmTarget material0.015 mm0.05 mm0.15 mmConnectionglugable optical fiber via FC socket, standard eyth 3 m; extension up to 50 m; extensio	
dynamic all dynamic all18 nm38 nm80 nmLinearity allDisplacement and distance $< \pm 0.1 \mu m$ $< \pm 0.2 \mu m$ $< \pm 0.5 \mu m$ Light spot diameter $6 \mu m$ $8 \mu m$ $9 \mu m$ Max. measuring angle all $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA) 0.60 0.55 0.45 Min. target thickness all $0.015 mm$ $0.05 mm$ $0.15 mm$ Target material $0.015 mm$ $0.05 mm$ $0.15 mm$ Installation $Clarring radius: static 30 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; extension up to 50 mm; dynamic 4ll the 3 mm; dynamic 4ll t$	
Linearity 9 Thickness $< \pm 0.2 \mu$ m $< \pm 0.5 \mu$ m $< < \pm 1.5 \mu$ mLight spot diameter 6μ m 8μ m 9μ mMax. measuring angle $^{4)}$ $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA) 0.60 0.55 0.45 Min. target thickness $^{5)}$ $0.015 m$ m $0.05 m$ m $0.15 m$ mTarget material $0.015 m$ m $0.05 m$ m $0.15 m$ mTarget material $0.015 m$ m $0.05 m$ m $0.15 m$ mConnection $100 m$ m $0.05 m$ m $0.15 m$ mInstallation $Clamping (mounting adapter see accessive)$ $100 m$ mTemperature rangeStorage $-20 \dots + 70 ^{\circ}C$ Operation $15g / 6 m$ s in XY axis, 1000 shocks eact $15g / 6 m$ sin XY axis, 1000 shocks eact	
Thickness< ±0.2 µm< ±0.5 µm< < ±1.5 µmLight spot diameter6 µm8 µm9 µmMax. measuring angle 40±34°±30°±24°Numerical aperture (NA)0.600.550.45Min. target thickness 500.015 mm0.05 mm0.15 mmTarget material0.015 mm0.05 mm0.15 mmConnection $pluggable optical fiber via FC socket, standard seg, glass)InstallationClamping (mounting adapter see accessive)Installation-20 \dots +70 °C-20 \dots +70 °C-50 °CShock (DIN EN 60068-2-27)50 °C15g / 6 ms in XY axis, 1000 shocks eaccessive)-50 °C$	<i>u</i> m
Max. measuring angle 4 $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA) 0.60 0.55 0.45 Min. target thickness 5 0.015 mm 0.05 mm 0.15 mm Target material 0.015 mm 0.05 mm 0.15 mm Connection gradies as well as transparent surfaces (-g. glass) gradies at thick on the second sec	m
Numerical aperture (NA)0.600.550.45Min. target thickness 5)0.015 mm0.05 mm0.15 mmTarget material0.015 mm0.05 mm0.15 mmTarget material91000 mm1000 mmConnection1000 mm1000 mm1000 mmInstallation0.000 mm0.000 mm1000 mmTemperature rangeStorage Operation-20 +70 °CShock (DIN EN 60068-2-27)15g / 6 ms in XY axis, 1000 shocks each	
Min. target thickness 5) 0.015 mm 0.05 mm 0.15 mm Target material reflective, diffuse as well as transparent surfaces (e.g. glass) Connection pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm Installation Clamping (mounting adapter see accessories) Temperature range Storage Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Target material reflective, diffuse as well as transparent surfaces (e.g. glass) Connection pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm Installation Clamping (mounting adapter see accessories) Temperature range Storage Operation -20 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Connection pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm Installation Clamping (mounting adapter see accessories) Temperature range Storage Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	1
Storage -20 +70 °C Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Storage -20 +70 °C Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Protection class (DIN EN 60529) IP64 (front)	
Material Aluminum housing, glass lenses	
Weight ⁶ approx. 140 g approx. 125 g approx. 225 g	5 a

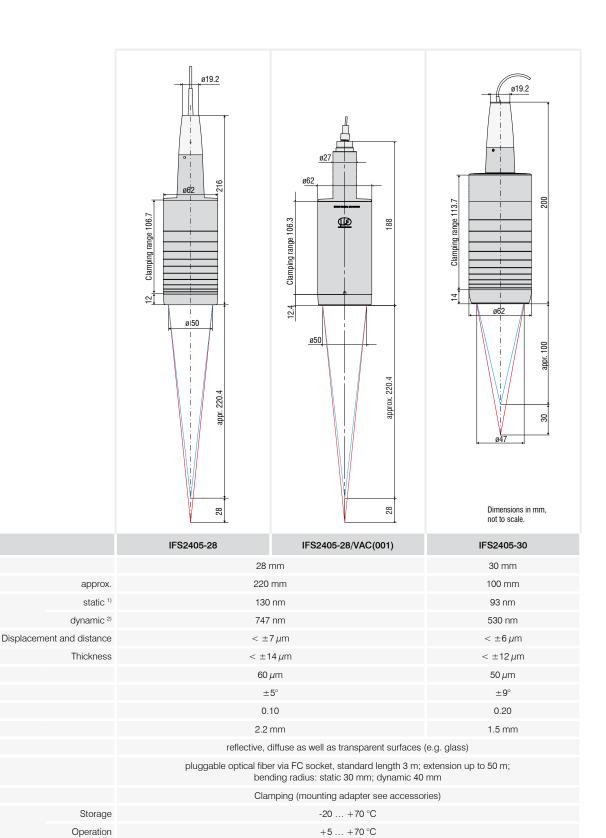
^a RIS noise relates to mid of measuring range on to optical that
 ^b All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

⁴⁾ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

⁹ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

⁶⁾ Sensor weight without optical fiber

Confocal sensors with high precision confocalDT IFS2405


Robust universal sen for various application Submicron resolution For one-sided thicknown measurements For precise distance measurements Very small light spot Very small light spot	n ess	Camping range 86 90 155 155 155 155 155 155 155 15	d d d d d d d d d d d d d d d d d d d	Dimensions in mm, not to scale.
Model		IFS2405-6	IFS2405/90-6	IFS2405-10
Measuring range		6 mm	6 mm	10 mm
Start of measuring range	approx.	63 mm	41 mm ¹⁾	50 mm
	static ²⁾	34 nm	34 nm	36 nm
Resolution	dynamic 3)	190 nm	190 nm	204 nm
Displace	ement and distance	$<\pm1.5\mu m$	< ±1.5 µm	$<\pm 2\mu m$
Linearity 4)	Thickness	$<\pm3\mu{ m m}$	$<\pm3\mu{ m m}$	$< \pm 4\mu{ m m}$
Light spot diameter		31 <i>µ</i> m	31 <i>µ</i> m	16 <i>µ</i> m
Max. measuring angle 5)		±10°	$\pm 10^{\circ}$	±17°
Numerical aperture (NA)		0.22	0.22	0.30
Min. target thickness 6)		0.3 mm	0.3 mm	0.5 mm
Target material		refle	ctive, diffuse as well as transparent surfaces (e.g. gl	ass)
Connection		pluggable optic	cal fiber via FC socket, standard length 3 m; extension bending radius: static 30 mm; dynamic 40 mm	on up to 50 m;
Installation			Clamping (mounting adapter see accessories)	
Temperature	Storage		-20 +70 °C	
Temperature range	Operation		+5 +70 °C	
Shock (DIN EN 60068-2-27)			15g / 6 ms in XY axis, 1000 shocks each	
Vibration (DIN EN 60068-2-6)			2g / 20 500 Hz in XY axis, 10 cycles each	
Protection class (DIN EN 60529)			IP64 (front)	
			ii o i (ii oiii)	
Material			Aluminum housing, glass lenses	
		approx. 260 g		approx. 500 g

 $^{\rm p}$ Start of measuring range measured from sensor axis $^{\rm 2i}$ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

³⁾ RMS noise relates to mid of measuring range (1 kHz)

⁴ All data at constant ambient temperature (25 ± 1 °C) against optical flat; specifications can change when measuring different objects.
 ⁵ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
 ⁶ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

7) Sensor weight without optical fiber

15g / 6 ms in XY axis, 1000 shocks each

2g / 20 ... 500 Hz in XY axis, 10 cycles each

IP40 (vacuum compatible)

Burnished stainless steel housing

¹⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

²⁾ RMS noise relates to mid of measuring range (1 kHz)

³⁾ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

⁴⁾ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values. ⁵⁾ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

IP64 (front)

Aluminum housing, glass lenses

approx. 750 g

⁶⁾ Sensor weight without optical fiber

Model

Resolution

Linearity 3)

Light spot diameter

Max. measuring angle 4)

Numerical aperture (NA)

Min. target thickness 5)

Target material

Connection

Installation

Material

Weight 6)

Temperature range

Shock (DIN EN 60068-2-27)

Vibration (DIN EN 60068-2-6)

Protection class (DIN EN 60529)

Measuring range

Start of measuring range

IP65 (front)

Aluminum housing, glass lenses

approx. 730 g

Confocal chromatic sensors for displacement and thickness confocalDT IFS2406

Sensors with axial or radial beam path Submicron resolution For one-sided thicknes measurements For precise distance measurements Very small light spot Suitable for VAC areas		exchangeable of 12.8	<image/>
Model		IFS2406-2,5/VAC(003)	IFS2406/90-2,5/VAC(001)
Measuring range		2.5 mm	2.5 mm
Start of measuring range	approx.	17.2 mm	12.6 mm ¹⁾
Recolution	static ²⁾	18 nm	18 nm
Resolution	static ²⁾ dynamic ³⁾	18 nm 97 nm	18 nm 97 nm
Displacem			
	dynamic 3)	97 nm	97 nm
Displacem	dynamic ³⁾ nent and distance	97 nm < ±0.75 μm	97 nm < ±0.75 μm
Linearity 4) Light spot diameter Max. measuring angle ⁵⁾	dynamic ³⁾ nent and distance	97 nm < ±0.75 μm < ±1.5 μm 10 μm ±16°	97 nm < ±0.75 μm < ±1.5 μm 10 μm ±16°
Linearity 4) Light spot diameter Max. measuring angle 5) Numerical aperture (NA)	dynamic ³⁾ nent and distance	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30
Linearity 4) Displacem Light spot diameter Max. measuring angle ⁵⁾ Numerical aperture (NA) Min. target thickness ⁶⁾	dynamic ³⁾ nent and distance	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10μ m $\pm 16^{\circ}$ 0.30 0.125 mm	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10μ m $\pm 16^{\circ}$ 0.30 0.125 mm
Linearity 4) Light spot diameter Max. measuring angle 5) Numerical aperture (NA)	dynamic ³⁾ nent and distance	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10μ m $\pm 16^{\circ}$ 0.30 0.125 mm reflective, diffuse as well as transformed pluggable optical fiber via F standard length 3 m;	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30
Linearity 4) Displacem Light spot diameter Max. measuring angle 5) Numerical aperture (NA) Min. target thickness 9) Target material	dynamic ³⁾ nent and distance	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm reflective, diffuse as well as tra- pluggable optical fiber via F standard length 3 m; bending radius: static 3	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m;
Linearity 4) Displacem Light spot diameter Max. measuring angle 5) Numerical aperture (NA) Min. target thickness 6) Target material Connection	dynamic ³⁾ nent and distance	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm reflective, diffuse as well as tra- pluggable optical fiber via F standard length 3 m; bending radius: static 3 Clamping (mounting ad	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m; 30 mm, dynamic 40 mm
Linearity 4) Displacem Light spot diameter Max. measuring angle 5) Numerical aperture (NA) Min. target thickness 6) Target material Connection	dynamic ³⁾ nent and distance Thickness	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10μ m $\pm 16^{\circ}$ 0.30 0.125 nm reflective, diffuse as well as tra- pluggable optical fiber via F standard length 3 m; bending radius: static 3 Clamping (mounting ac	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m; 30 mm, dynamic 40 mm dapter see accessories)
Linearity 4) Displacem Light spot diameter Max. measuring angle 5) Numerical aperture (NA) Min. target thickness 6) Target material Connection	dynamic ³⁾ Inent and distance Thickness	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm reflective, diffuse as well as transformed as the standard length 3 m; bending radius: static 3 Clamping (mounting and -20 +5	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10μ m $\pm 16^{\circ}$ 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m; 30 mm, dynamic 40 mm dapter see accessories) $+70 ^{\circ}C$
Linearity 4) Displacem Light spot diameter Max. measuring angle 5) Mumerical aperture (NA) Min. target thickness 6) Target material Connection Installation Imstallation	dynamic ³⁾ Inent and distance Thickness	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm reflective, diffuse as well as tra- pluggable optical fiber via F standard length 3 m; bending radius: static 3 Clamping (mounting ad $-20 \dots$ $+5 \dots$ 15g / 6 ms in XY axi	97 nm < ±0.75 μm < ±1.5 μm 10 μm ±16° 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m; 30 mm, dynamic 40 mm +70 °C +70 °C
Linearity 4) Light spot diameter Max. measuring angle 5) Numerical aperture (NA) Min. target thickness 6) Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27)	dynamic ³⁾ Inent and distance Thickness	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 nm reflective, diffuse as well as translated of the second of the sec	97 nm < ±0.75 μm < ±1.5 μm 10 μm ±16° 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m; 30 mm, dynamic 40 mm dapter see accessories) +70 °C +70 °C +70 °C
Linearity 4) Light spot diameter Max. measuring angle 5) Numerical aperture (NA) Min. target thickness 6) Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27) Vibration (DIN EN 60068-2-6)	dynamic ³⁾ Inent and distance Thickness	97 nm $< \pm 0.75 \mu$ m $< \pm 1.5 \mu$ m 10 μ m $\pm 16^{\circ}$ 0.30 0.125 mm reflective, diffuse as well as transformed as the standard length 3 m; bending radius: static 3 Clamping (mounting and -20 +5 15g / 6 ms in XY axis 2g / 20 500 Hz in X IP40 (vacuur	97 nm < ±0.75 μm < ±1.5 μm 10 μm ±16° 0.30 0.125 mm ansparent surfaces (e.g. glass) C socket, type C240x-x (01); extension up to 50 m; 30 mm, dynamic 40 mm dapter see accessories) +70 °C +70 °C x, 1000 shocks each (Y axis, 10 cycles each

²⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

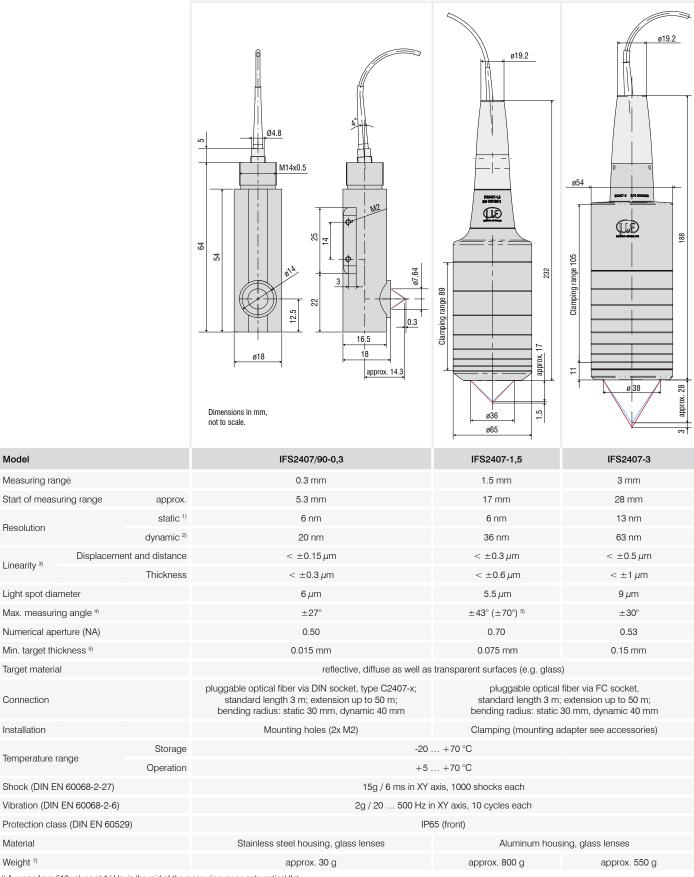
^a Average norm 512 values at NA2, in the find of the find solar practice on the spectrum of the find of the find of the find solar practice on the spectrum of the find of

7) Sensor weight without optical fiber

Dimensi not to s	ions in mm, cale.	Clamping range 102	19.2 927 	Campio range 54.5 024 0 0 0 0 0 0 0 0 0 0 0 0 0	127.186 704 704 704 704 704 704 704 704 704 704
Model		IFS2406-3	IFS2406-10	IFS2406-10/VAC(001)	IFS2406-3/VAC(001)
Measuring range		3 mm		10 mm	3 mm
				TO THIN	511111
Start of measuring range	approx.	75 mm		27 mm	75 mm
	static 1)				
Resolution	static ¹⁾ dynamic ²⁾	75 mm 32 nm 168 nm		27 mm 38 nm 207 nm	75 mm 50 nm 168 nm
Resolution	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm < ±1.5 μm		27 mm 38 nm 207 nm < ±2 μm	75 mm 50 nm 168 nm < ±1.5 μm
Resolution Displace	static ¹⁾ dynamic ²⁾	75 mm 32 nm 168 nm < ±1.5 μm < ±3 μm		27 mm 38 nm 207 nm < ±2 μm < ±4 μm	75 mm 50 nm 168 nm < ±1.5 μm < ±3 μm
Resolution Displace Linearity ³⁾ Light spot diameter	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm < ±1.5 μm < ±3 μm 35 μm		27 mm 38 nm 207 nm < ±2 μm < ±4 μm 15 μm	75 mm 50 nm 168 nm < ±1.5 μm < ±3 μm 35 μm
Resolution Linearity ^a Light spot diameter Max. measuring angle ⁴	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $35 \ \mu m$ $\pm 6.5^{\circ}$		27 mm 38 nm 207 nm $< \pm 2 \mu m$ $< \pm 4 \mu m$ 15 μm $\pm 13.5^{\circ}$	75 mm 50 nm 168 nm $< \pm 1.5 \mu m$ $< \pm 3 \mu m$ 35 μm $\pm 6.5^{\circ}$
Resolution Linearity ³ Light spot diameter Max. measuring angle ⁴ Numerical aperture (NA)	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm $< \pm 1.5 \mu m$ $< \pm 3 \mu m$ $35 \mu m$ $\pm 6.5^{\circ}$ 0.14		27 mm 38 nm 207 nm < ±2 μm < ±4 μm 15 μm	75 mm 50 nm 168 nm $< \pm 1.5 \mu m$ $< \pm 3 \mu m$ 35 μm $\pm 6.5^{\circ}$ 0.14
Resolution Linearity ³) Light spot diameter Max. measuring angle ⁴) Numerical aperture (NA) Min. target thickness ⁵)	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm $< \pm 1.5 \mu \text{m}$ $< \pm 3 \mu \text{m}$ $35 \mu \text{m}$ $\pm 6.5^{\circ}$ 0.14 0.15 mm		27 mm 38 nm 207 nm $< \pm 2 \mu m$ $< \pm 4 \mu m$ $\pm 13.5^{\circ}$ 0.25 0.5 mm	75 mm 50 nm 168 nm $< \pm 1.5 \mu$ m $< \pm 3 \mu$ m 35 μ m $\pm 6.5^{\circ}$ 0.14 0.15 mm
Resolution Linearity ³ Light spot diameter Max. measuring angle ⁴ Numerical aperture (NA)	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm		27 mm 38 nm 207 nm $< \pm 2 \mu$ m $< \pm 4 \mu$ m 15 μ m $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla //pe C240x-x (01); pt o 50 m;	75 mm 50 nm 168 nm $< \pm 1.5 \mu$ m $< \pm 3 \mu$ m 35 μ m $\pm 6.5^{\circ}$ 0.14 0.15 mm
Resolution Displace Linearity ³) Light spot diameter Max. measuring angle ⁴) Numerical aperture (NA) Min. target thickness ⁵) Target material	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm	reflective, diffuse as well cal fiber via FC socket, ty I length 3 m; extension u adius: static 30 mm, dyna	27 mm 38 nm 207 nm $< \pm 2 \mu$ m $< \pm 4 \mu$ m 15 μ m $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla //pe C240x-x (01); pt o 50 m;	$\begin{array}{c} 75 \text{ mm} \\ 50 \text{ nm} \\ 168 \text{ nm} \\ < \pm 1.5 \mu \text{m} \\ < \pm 3 \mu \text{m} \\ 35 \mu \text{m} \\ \pm 6.5^{\circ} \\ 0.14 \\ 0.15 \text{ mm} \\ \end{array}$
Resolution Linearity ³) Displace Max. measuring angle ⁴) Numerical aperture (NA) Min. target thickness ⁵) Target material Connection Installation	static ¹⁾ dynamic ²⁾ ment and distance	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm	reflective, diffuse as well cal fiber via FC socket, ty I length 3 m; extension u adius: static 30 mm, dyn: Clamping (mount	27 mm 38 nm 207 nm $< \pm 2 \mu m$ $< \pm 4 \mu m$ $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla $\mu p = C240x \times (01);$ p to 50 m; amic 40 mm	$\begin{array}{c} 75 \text{ mm} \\ 50 \text{ nm} \\ 168 \text{ nm} \\ < \pm 1.5 \mu \text{m} \\ < \pm 3 \mu \text{m} \\ 35 \mu \text{m} \\ \pm 6.5^{\circ} \\ 0.14 \\ 0.15 \text{ mm} \\ \end{array}$
Resolution Linearity ³) Light spot diameter Max. measuring angle ⁴) Numerical aperture (NA) Min. target thickness ⁵) Target material Connection	static ¹⁾ dynamic ²⁾ ment and distance Thickness	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm	reflective, diffuse as well cal fiber via FC socket, ty I length 3 m; extension u adius: static 30 mm, dyn Clamping (mount -2	27 mm 38 nm 207 nm $< \pm 2 \mu$ m $< \pm 2 \mu$ m $= \pm 3.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla μ pe C240x-x (01); μ to 50 m; amic 40 mm ing adapter see accessories)	$\begin{array}{c} 75 \text{ mm} \\ 50 \text{ nm} \\ 168 \text{ nm} \\ < \pm 1.5 \mu \text{m} \\ < \pm 3 \mu \text{m} \\ 35 \mu \text{m} \\ \pm 6.5^{\circ} \\ 0.14 \\ 0.15 \text{ mm} \\ \end{array}$
Resolution Linearity ³) Displace Max. measuring angle ⁴) Numerical aperture (NA) Min. target thickness ⁵) Target material Connection Installation	static ¹⁾ dynamic ²⁾ ment and distance Thickness	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm	reflective, diffuse as well cal fiber via FC socket, ty I length 3 m; extension u Idius: static 30 mm, dyna Clamping (mount -2	27 mm 38 nm 207 nm $< \pm 2 \mu$ m $< \pm 2 \mu$ m 15μ m $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla μ pe C240x-x (01); μ p to 50 m; amic 40 mm ing adapter see accessories) 20 +70 °C	$\begin{array}{c} 75 \text{ mm} \\ 50 \text{ nm} \\ 168 \text{ nm} \\ < \pm 1.5 \mu \text{m} \\ < \pm 3 \mu \text{m} \\ 35 \mu \text{m} \\ \pm 6.5^{\circ} \\ 0.14 \\ 0.15 \text{ mm} \\ \end{array}$
Resolution Linearity ³) Displace Max. measuring angle ⁴) Mumerical aperture (NA) Min. target thickness ⁵) Target material Connection Installation Temperature range	static ¹⁾ dynamic ²⁾ ment and distance Thickness Storage Operation	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm	reflective, diffuse as well cal fiber via FC socket, ty l length 3 m; extension u dius: static 30 mm, dyn; Clamping (mount -2 4 15g / 6 ms in)	27 mm 38 nm 207 nm $< \pm 2 \mu$ m $< \pm 4 \mu$ m 15 μ m $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla <i>xp</i> e C240x-x (01); <i>xp</i> to 50 m; amic 40 mm ing adapter see accessories) 20 +70 °C -5 +70 °C	$\begin{array}{c} 75 \text{ mm} \\ 50 \text{ nm} \\ 168 \text{ nm} \\ < \pm 1.5 \mu \text{m} \\ < \pm 3 \mu \text{m} \\ 35 \mu \text{m} \\ \pm 6.5^{\circ} \\ 0.14 \\ 0.15 \text{ mm} \\ \end{array}$
Resolution Linearity ³ Light spot diameter Max. measuring angle ⁴ Numerical aperture (NA) Min. target thickness ⁵ Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27)	static ¹⁾ dynamic ²⁾ ment and distance Thickness Storage Operation	75 mm 32 nm 168 nm $< \pm 1.5 \ \mu m$ $< \pm 3 \ \mu m$ $\pm 6.5^{\circ}$ 0.14 0.15 mm	reflective, diffuse as well cal fiber via FC socket, ty I length 3 m; extension u adius: static 30 mm, dyn Clamping (mount -2 + 15g / 6 ms in) 2g / 20 500 F	27 mm 38 nm 207 nm $< \pm 2 \mu$ m $< \pm 4 \mu$ m 15 μ m $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla μ pe C240x-x (01); μ to 50 m; amic 40 mm ing adapter see accessories) 20 +70 °C < 5 +70 °C KY axis, 100 shocks each 4z in XY axis, 10 cycles each IP40 (vacuum compatible)	75 mm 50 nm 168 nm < ±1.5 μm
Resolution Linearity ³ Light spot diameter Max. measuring angle ⁴ Mumerical aperture (NA) Min. target thickness ³ Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27) Vibration (DIN EN 60068-2-6)	static ¹⁾ dynamic ²⁾ ment and distance Thickness Storage Operation	75 mm 32 nm 168 nm $< \pm 1.5 \mu$ m $< \pm 3 \mu$ m 35 μ m $\pm 6.5^{\circ}$ 0.14 0.15 mm pluggable optic standard bending ra	reflective, diffuse as well cal fiber via FC socket, ty I length 3 m; extension u dius: static 30 mm, dyn: Clamping (mount -2 + 15g / 6 ms in) 2g / 20 500 H	27 mm 38 nm 207 nm $< \pm 2 \mu m$ $< \pm 4 \mu m$ $\pm 13.5^{\circ}$ 0.25 0.5 mm as transparent surfaces (e.g. gla $\mu pe C240x-x (01);$ p to 50 m; amic 40 mm ding adapter see accessories) 20 $+70 ^{\circ}C$ $-5 +70 ^{\circ}C$ XY axis, 1000 shocks each dz in XY axis, 10 cycles each	75 mm 50 nm 168 nm < ±1.5 μm

 $^{\mbox{\tiny 2)}}$ RMS noise relates to mid of measuring range (1 kHz)

⁹ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.
 ⁹ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
 ⁹ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.


6) Sensor weight without optical fiber

High precision sensors for displacement and thickness measurements confocalDT IFS2407

Image: Submicron resolution Image: Submicron resolution <th></th> <th>Clambing range</th> <th>01 50 58.5</th> <th>Image: select select</th>		Clambing range	01 50 58.5	Image: select
Model		IFS2407-0.1	IFS2407-0.1(001)	IFS2407-0.8
Model Measuring range		IFS2407-0.1 0.1 mm	IFS2407-0.1(001) 0.1 mm	IFS2407-0.8 0.8 mm
	approx.			
Measuring range Start of measuring range	approx. static ¹⁾	0.1 mm	0.1 mm	0.8 mm
Measuring range		0.1 mm 1 mm	0.1 mm 1 mm	0.8 mm 5.9 mm
Measuring range Start of measuring range Resolution Displaceme	static 1)	0.1 mm 1 mm 3 nm	0.1 mm 1 mm 3 nm	0.8 mm 5.9 mm 24 nm
Measuring range Start of measuring range Resolution	static ¹⁾ dynamic ²⁾	0.1 mm 1 mm 3 nm 6 nm	0.1 mm 1 mm 3 nm 6 nm	0.8 mm 5.9 mm 24 nm 75 nm
Measuring range Start of measuring range Resolution Displaceme	static ¹⁾ dynamic ²⁾ ent and distance	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm	0.8 mm 5.9 mm 24 nm 75 nm < ±0.2 μm
Measuring range Start of measuring range Resolution Linearity ³⁾	static ¹⁾ dynamic ²⁾ ent and distance	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm < ±0.1 μm	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm < ±0.1 μm	0.8 mm 5.9 mm 24 nm 75 nm < ±0.2 μm < ±0.4 μm
Measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter	static ¹⁾ dynamic ²⁾ ent and distance	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 3 \mu \text{m} \\ \pm 48^{\circ} \\ 0.80 \end{array}$	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm < ±0.1 μm 4 μm	$\begin{array}{c} 0.8 \text{ mm} \\ 5.9 \text{ mm} \\ 24 \text{ nm} \\ 75 \text{ nm} \\ < \pm 0.2 \mu \text{m} \\ < \pm 0.4 \mu \text{m} \\ 6 \mu \text{m} \\ \pm 30^{\circ} \\ 0.50 \end{array}$
Measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾	static ¹⁾ dynamic ²⁾ ent and distance	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 3 \mu \text{m} \\ \pm 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 4 \mu \text{m} \\ \pm 48^{\circ} \\ 0.70 \\ 0.005 \text{ mm} \end{array}$	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu$ m $< \pm 0.4 \mu$ m 6μ m $\pm 30^{\circ}$ 0.50 0.04 mm
Measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA)	static ¹⁾ dynamic ²⁾ ent and distance	$ \begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 3 \mu \text{m} \\ \pm 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \\ \end{array} $	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m 4μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu$ m $< \pm 0.4 \mu$ m 6μ m $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass)
Measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾	static ¹⁾ dynamic ²⁾ ent and distance	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu m$ $< \pm 0.1 \mu m$ 3 μm $\pm 48^{\circ}$ 0.80 0.005 mm reflective, diffu pluggable op	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 4 \mu \text{m} \\ \pm 48^{\circ} \\ 0.70 \\ 0.005 \text{ mm} \end{array}$	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu$ m $< \pm 0.4 \mu$ m 6μ m $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m;
Measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material	static ¹⁾ dynamic ²⁾ ent and distance	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu m$ $< \pm 0.1 \mu m$ $4 \mu m$ $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m;	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu m$ $< \pm 0.4 \mu m$ $6 \mu m$ $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm
Measuring range Start of measuring range Resolution Linearity ⁽³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material Connection Installation	static ¹⁾ dynamic ²⁾ ent and distance	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m 4μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 m	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu m$ $< \pm 0.4 \mu m$ $6 \mu m$ $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm
Measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material Connection	static ¹⁾ dynamic ²⁾ ent and distance Thickness	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m $\pm 40^{m}$ $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 m ng (mounting adapter see accessor	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu$ m $< \pm 0.4 \mu$ m 6μ m $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm
Measuring range Start of measuring range Resolution Linearity ⁽³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material Connection Installation	static ¹⁾ dynamic ²⁾ ent and distance Thickness	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 3 \mu \text{m} \\ \pm 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$ $\begin{array}{c} \text{reflective, diffully pluggable op bending } \\ \text{clamping} \end{array}$	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m 4μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 mm; ng (mounting adapter see accessor $-20 \dots +70 \ ^{\circ}C$	0.8 mm 5.9 mm 24 nm 75 nm < ±0.2 µm < ±0.4 µm 6 µm ±30° 0.50 0.04 mm e.g. glass) ngth 3 m; mm
Measuring range Start of measuring range Resolution Linearity ⁽³⁾ Light spot diameter Max. measuring angle ⁽⁴⁾ Numerical aperture (NA) Min. target thickness ⁽⁵⁾ Target material Connection Installation Temperature range	static ¹⁾ dynamic ²⁾ ent and distance Thickness	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m 4μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 m ng (mounting adapter see accessor $-20 \dots +70 ^{\circ}$ C $+5 \dots +70 ^{\circ}$ C	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu m$ $< \pm 0.4 \mu m$ $6 \mu m$ $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm les)
Measuring range Start of measuring range Start of measuring range Resolution Linearity ^{a)} Displaceme Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27)	static ¹⁾ dynamic ²⁾ ent and distance Thickness	$\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05 \mu \text{m} \\ < \pm 0.1 \mu \text{m} \\ 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m 4μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 m ng (mounting adapter see accessor $-20 \dots +70 ^{\circ}$ C $+5 \dots +70 ^{\circ}$ C $+5 \dots +70 ^{\circ}$ C	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu m$ $< \pm 0.4 \mu m$ $6 \mu m$ $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm les)
Measuring range Start of measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27) Vibration (DIN EN 60068-2-6)	static ¹⁾ dynamic ²⁾ ent and distance Thickness	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm < ±0.1 μm 3 μm ±48° 0.80 0.005 mm reflective, diffu pluggable op bending Clampi	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m $< \pm 0.1 \mu$ m 4μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 mm; ng (mounting adapter see accessor $-20 \dots +70 ^{\circ}$ C $+5 \dots +70 ^{\circ}$ C / 6 ms in XY axis, 1000 shocks each 0 \dots 500 Hz in XY axis, 10 cycles each	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu m$ $< \pm 0.4 \mu m$ $6 \mu m$ $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm les)
Measuring range Start of measuring range Start of measuring range Resolution Linearity ³⁾ Light spot diameter Max. measuring angle ⁴⁾ Numerical aperture (NA) Min. target thickness ⁵⁾ Target material Connection Installation Temperature range Shock (DIN EN 60068-2-27) Vibration (DIN EN 60068-2-6) Protection class (DIN EN 60529)	static ¹⁾ dynamic ²⁾ ent and distance Thickness	0.1 mm 1 mm 3 nm 6 nm < ±0.05 μm < ±0.1 μm 3 μm ±48° 0.80 0.005 mm reflective, diffu pluggable op bending Clampi	0.1 mm 1 mm 3 nm 6 nm $< \pm 0.05 \mu$ m $< \pm 0.05 \mu$ m $< \pm 0.1 \mu$ m 4 μ m $\pm 48^{\circ}$ 0.70 0.005 mm use as well as transparent surfaces (tical fiber via FC socket, standard le extension up to 50 m; g radius: static 30 mm; dynamic 40 m ing (mounting adapter see accessor $-20 \dots +70 ^{\circ}$ C $+5 \dots +70 ^{\circ}$ C / 6 ms in XY axis, 1000 shocks each 0 \dots 500 Hz in XY axis, 10 cycles ear IP65 (front)	0.8 mm 5.9 mm 24 nm 75 nm $< \pm 0.2 \mu$ m $< \pm 0.4 \mu$ m 6μ m $\pm 30^{\circ}$ 0.50 0.04 mm e.g. glass) ngth 3 m; mm les)

^a Average from 512 values at AR2, if the find of the find soft of measuring range on o opecan data at R2. If the find of the find soft of measuring range (1 kHz)
 ^a RMS noise relates to mid of measuring range (1 kHz)
 ^a All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.
 ^a Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
 ^a Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

6) Sensor weight without optical fiber

¹⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

²⁾ RMS noise relates to mid of measuring range (1 kHz)

³⁾ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

4) Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

⁵⁾ Maximum measuring angle of the sensor up to which a usable signal can be obtained on diffusely reflecting metallic surfaces, whereby the accuracy decreases towards the limit values

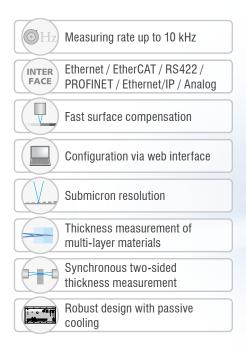
⁶ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

7) Sensor weight without optical fiber

Model

Resolution

Linearity 3)


Connection

Installation

Material

Weight 7)

The new confocal controller for industrial applications confocalDT IFC242x

The confocalDT 2421/22 controllers set the industrial standard in precise, confocal measurement technology. Available as either a single- or a dual-channel version, these measuring systems are a low cost solution especially for serial applications. The active exposure regulation of the CCD line enables fast and accurate compensation of varying surfaces.

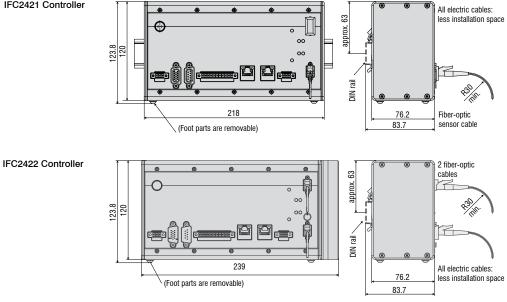
The controller can be operated with any IFS sensor and is available as a standard version for distance and thickness measurements or as a multi-peak version for multi-layer measurements. Using a special calculation function, the confocalDT 2422 dual-channel version evaluates both channels. Measurement acquisition is synchronous and can be carried out while exploiting the full measuring rate for both channels.

Due to a user-friendly web interface, no additional software is necessary to configure the controller and the sensors. Data output is via Ethernet, EtherCAT, RS422 or analog output.

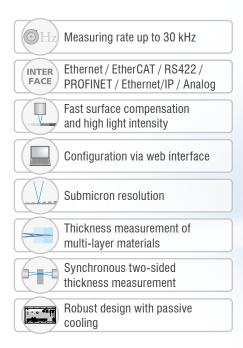
Settings are made via the web interface. For thickness measurements, materials are stored in an expandable materials database.

Two sensors can be directly connected to a confocal IFC2422 controller.

Model		IFC2421	IFC2421MP	IFC2422	IFC2422MP	
	Ethernet/EtherCAT		1 nr	n		
Resolution	RS422		18 k	bit		
Analog			16 bits (tea	achable)		
Measuring rate			continuously adjustable fi	rom 100 Hz to 10 kHz $^{1)}$		
Linearity			typ. $< \pm 0.025$ % FSO (depends on sensor)			
Multi-peak measure	ement	1 layer	5 layers	1 layer	5 layers	
Light source			internal wh	hite LED		
No. of characteristic	curves	up to 20 chara	cteristic curves for different senso	rs per channel, selection via tab	le in the menu	
Permissible ambier	t light 2)		30,00	0 lx		
Synchronization			yes	3		
Supply voltage			24 VDC :	±15 %		
Power consumption	1		approx.	10 W		
Signal input		sync-in / t	rig-in; 2x encoders (A+, A-, B+, E	3-, index) or 3x encoders (A+, A	-, B+, B-)	
Digital interface			Ethernet; EtherCAT; RS422; F	PROFINET ³⁾ ; EtherNet/IP ³⁾		
Analog output			Current: 4 20 mA; voltage: 0	10 V (16 bit D/A converter)		
Switching output			Error1-Out, I	Error2-Out		
Digital output			sync-	out		
	Optical	pluggable o	ptical fiber via E2000 socket, leng	th 2 m 50 m, min. bending rac	dius 30 mm)	
Connection	Electrical		3-pin supply te n (15-pin, HD-sub socket, max. ca RS422 connection socket (9-pin, s 3-pin output terminal strip (n 11-pin I/O terminal strip (n socket for Ethernet (out) / EtherC/	ble length 3 m, 30 m with extern Sub-D, max. cable length 30 m); max. cable length 30 m); nax. cable length 30 m);		
Installation			Free-standing, DI	N rail mounting		
Tennest	Storage		-20 +	-70 °C		
Temperature range	Operation		+5 +	50 °C		
Shock (DIN EN 600	68-2-27)	15g / 6 ms in XYZ axis, 1000 shocks each				
Vibration (DIN EN 6	0068-2-6)	2g / 20 500 Hz in XYZ axis, 10 cycles each				
Protection class (DI	N EN 60529)	IP40				
Material			Alumir	num		
Weight		approx	. 1.8 kg	approx.	2.25 kg	
Compatibility			compatible with all c	onfocalDT sensors		
No. of measuremer	nt channels 4)		1	2	2	
Control and indicate	or elements	Multifunc	ion button (two adjustable functio 5x LEDs for intensity, range,	, , ,	fter 10 s);	


FSO = Full Scale Output

¹⁾ Full measuring range up to 8 kHz. Sensor-dependent up to 80% FSO between 9 and 10 kHz.


2) Illuminant: light bulb

⁹ Connection via interface module (see accessories)
 ⁴ No loss of intensity and linearity due to two synchronous measurement channels

IFC2421 Controller

Light-intensive controller for high speed measurements confocalDT IFC246x

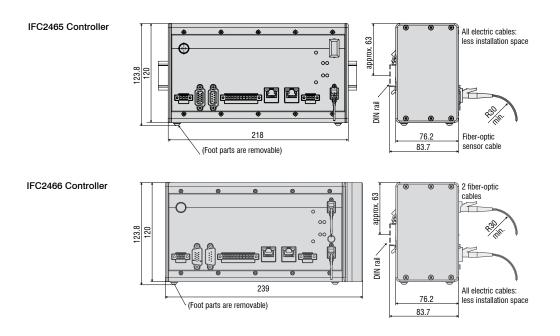
The confocalDT 2465 and 2466 controllers enable fast, high-precision distance and thickness measurements up to 30 kHz. The controllers are available as a single- or dual-channel variant. Using a special calculation function, the confocalDT 2466 dual-channel version evaluates both channels. Measurement acquisition is synchronous and can be carried out while exploiting the full measuring rate for both channels.

Available as a standard version for distance and thickness measurements as well as a multi-peak version, the controllers are compatible with all sensor types of the IFS series. The multi-peak models are used for the thickness measurement of up to 5 transparent layers.

Due to a user-friendly web interface, no additional software is necessary to configure the controller and the sensors. Data output is via Ethernet, EtherCAT, RS422 or analog output. Optionally available interface modules enable the data to be output also via PROFINET or EtherNet/IP.

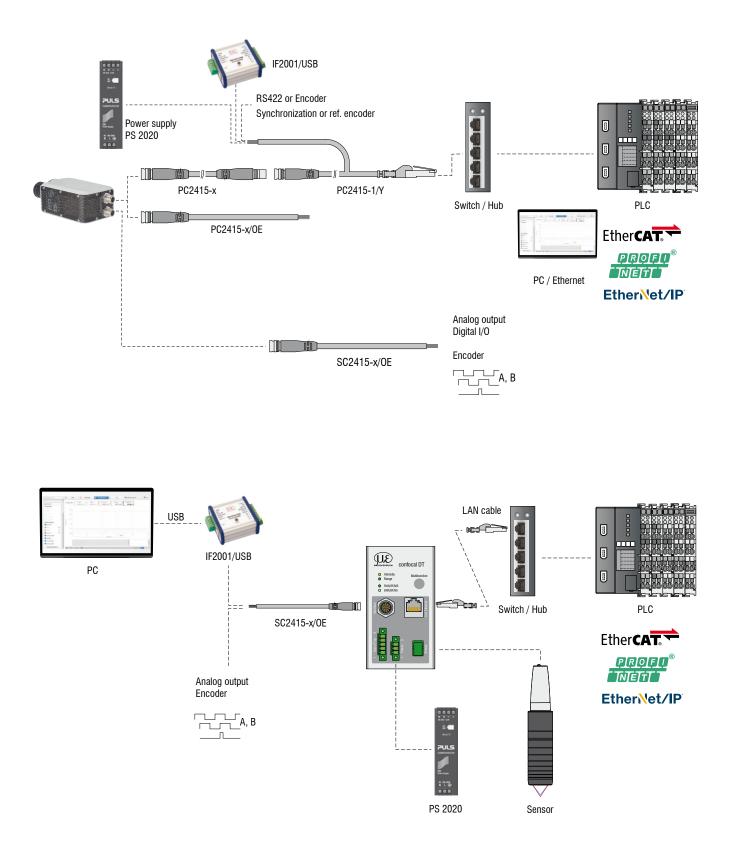
High luminous intensity for challenging measuring objects

A controller version with high light intensity is available for measuring low-reflecting objects. Especially with tilted or dark surfaces, the enhanced light intensity increases the proportion of reflected light and enables stable measurements.

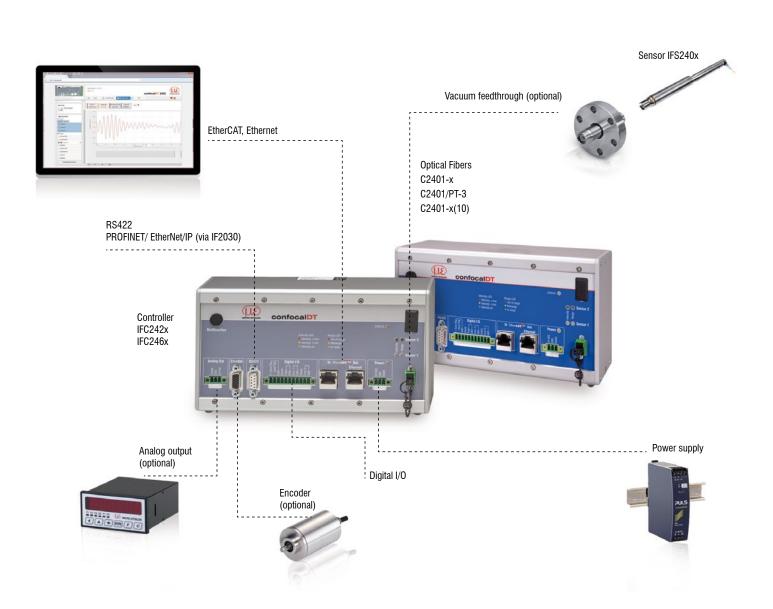

Settings are made via the web interface. For thickness measurements, materials are stored in an expandable materials database.

Model		IFC2465	IFC2465MP	IFC2466	IFC2466MP	
Etherne	et/EtherCAT		1 r	ım		
Resolution RS422		18 bit				
	Analog	16 bits (teachable)				
Measuring rate			continuously adjustable	from 100 Hz to 30 kHz		
Linearity			typ. < ±0.025 % FSO	(depends on sensor)		
Multi-peak measurement		1 layer	5 layers	1 layer	5 layers	
Light source		inter	nal white LED; high-power LED	for variant with double light inte	nsity	
No. of characteristic curves		up to 20 charac	teristic curves for different sense	ors per channel, selection via ta	ble in the menu	
Permissible ambient light 1)			30,0	00 lx		
Synchronization			ує	es		
Supply voltage			24 VDC	±15 %		
Power consumption			approx. 10 W; approx. 20 W w	ith double light intensity option		
Signal input		sync-in / tri	g-in; 2x encoders (A+, A-, B+,	B-, index) or 3x encoders (A+,	A-, B+, B-)	
Digital interface			Ethernet / EtherCAT / RS422	/ PROFINET ²⁾ / EtherNet/IP ²⁾		
Analog output			Current: 4 20 mA; voltage: 0	0 10 V (16 bit D/A converter)		
Switching output		Error1-Out, Error2-Out				
Digital output		sync-out				
	Optical	pluggable op	tical fiber via E2000 socket, len	gth 2 m 50 m, min. bending r	adius 30 mm	
Connection	Electrical	30 m with external e 3-pin output termina	minal strip; encoder connection encoder supply); RS422 connec al strip (max. cable length 30 m) socket for Ethernet (out) / EtherC	tion socket (9-pin, Sub-D, max. ; 11-pin I/O terminal strip (max.	cable length 30 m); cable length 30 m);	
Installation		Free-standing, DIN rail mounting				
Tomporatura rango	Storage		-20	+70 °C		
Temperature range	Operation	+5 +50 °C				
Shock (DIN EN 60068-2-27)		15g / 6 ms in XYZ axis, 1000 shocks each				
Vibration (DIN EN 60068-2-6)		2g / 20 500 Hz in XYZ axis, 10 cycles each				
Protection class (DIN EN 60529)		IP40				
Material			Alum	inum		
Weight		approx	. 1.8 kg	approx.	2.25 kg	
Compatibility			compatible with all o	confocalDT sensors		
No. of measurement channels $^{\scriptscriptstyle 3\!)}$			1	2	2	
Control and indicator elements		Multifunction	on button (two adjustable function 5x LEDs for intensity, range	ons and reset to factory setting , status and supply voltage	after 10 s);	

FSO = Full Scale Output


¹⁾ Illuminant: light bulb ²⁾ Connection via interface module (see accessories)

³⁾ No loss of intensity and linearity due to two synchronous measurement channels


Cable concepts for every application

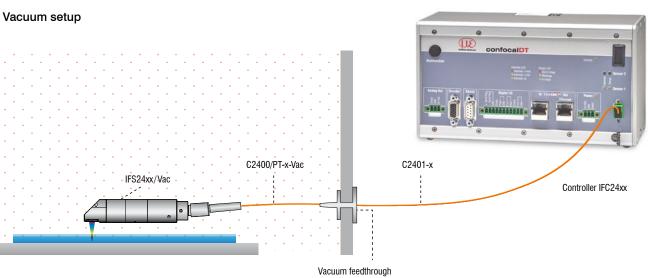
The connection options are diverse and can be adapted to your plant or machine concept.

The confocalDT system consists of:

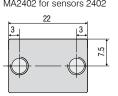
- Sensor IFS240x
- Controller IFC24xx
- Fiber optic cable C24xx

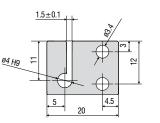
Customer-specific modifications confocalDT

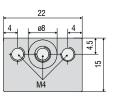
Customer-specific modifications


Application examples are often found where the standard versions of the sensors and the controllers are performing at their limits. To facilitate such special tasks, it is possible to customize the sensor design and to adjust the controller accordingly. Common requests for modifications include changes in design, mounting options, customized cable lengths and modified measuring ranges.

Possible modifications

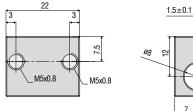

- Sensors with connector
- Cable length
- Vacuum suitability up to UHV
- Specific lengths
- Customer-specific mounting options
- Optical filter for ambient light compensation
- Housing material
- Measuring range / Offset distance

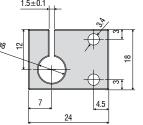


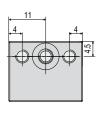

C2405.../Vac (KF or CF flange) C2402.../Vac (KF flange)

Accessories Mounting adapter

Accessories: mounting adapter MA2402 for sensors 2402

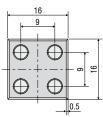


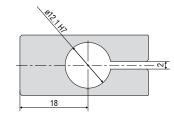


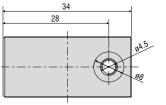


Accessories: mounting adapter

MA2403 for sensors 2403

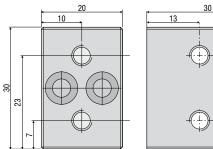


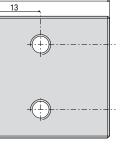


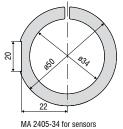


Accessories: mounting adapter

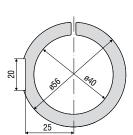
MA2404-12 for sensors IFS2404-2 / IFS2404/90-2 / IFS2407-0,1

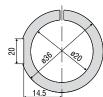




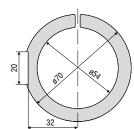


Accessories: mounting adapter MA2400 for sensors IFS2405 / IFS2406 / IFS2407 (consisting of a mounting block and a mounting ring)

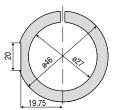

Mounting block



MA 2405-34 for sensors IFS2405-3 IFD2415-3

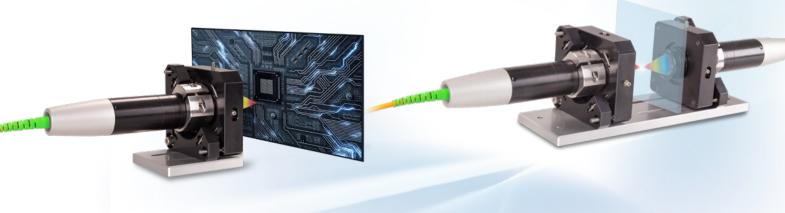


MA 2405-40 for sensors IFS 2405-6



Mounting ring

MA 2406-20 for sensors IFS2406-2,5 IFS2406/90-2,5


MA 2405-54 for sensors IFS2405-10 IFS2407-3 IFD2415-10

MA 2400-27 for sensors IFS2405-0,3 / -1 IFS2406-3 / -10 IFD2411-x IFD2410-x IFD2415-1 20 . 665 36.5

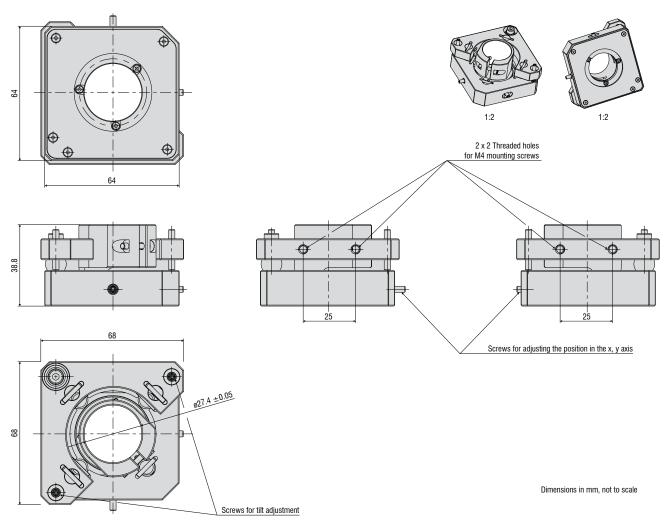
MA 2405-62 for sensors IFS2405-28 / -30

Accessories Adjustable mounting adapters

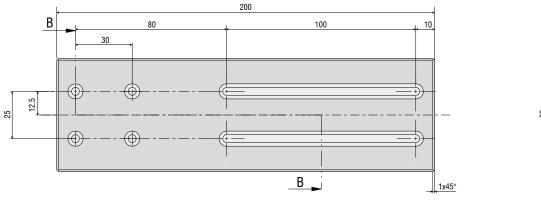
JMA-xx mounting adapter for distance measurements

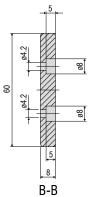
JMA-Thickness mounting adapter for two-sided thickness measurements

The adjustable JMA mounting adapter simplifies the alignment and fine adjustment of confocal sensors. The sensors are integrated and aligned directly in the machine together with the adapter. This corrects, e.g, minor deviations caused by mounting and compensates for tilted measuring objects. With two-sided thickness measurements, the JMA-Thickness mounting adapter supports the fine alignment of the two measuring points.



Dimensions


Adjustable mounting adapter JMA



Holder for smaller sensor diameters

Sensor holder for JMA-08 Sensor holder for JMA-10 Sensor holder for JMA-12 Sensor holder for JMA-20 A-A 19.8-0.5 A-A А 19.8-0.5 19.8-0.5 А А 19.8-8.5 A-A 1 _1 1 1 ø20.05^{+0.06} ø27.0.3 10.05 12.05 **38.05** [⊥] a27. 027 M4 A-A M4 M4 A А А for M4x6 grub screw, 0441074 for M4x6 grub screw, for M4x6 grub screw, 0441041 0441041

Mounting plate JMP for JMA-Thickness

Accessories Mounting adapter for individual sensors

Manual adjustment mechanism for easy and fast adjustment

Optimal sensor alignment for best possible measurement results

Ideally suitable for machine integration

Particularly for high resolution sensors with a small tilt angle, perpendicular installation is required. The JMA-xx mounting adapter enables fine alignment of the sensor to the target via the simple adjustment mechanism. This makes it easy to compensate for minor mounting deviations or tilted measuring objects.

= 1 JMA-xx

I sensor holder for smaller diameters (not with JMA-27)

dilitin

- 1 hexagon screwdriver for positioning
- Assembly instructions

Scope of supply

Model		JMA-08	JMA-12	JMA-20	JMA-27
Tilling range	Х		±4° (continuou	usly adjustable)	
Tilting range	Υ		±4° (continuou	usly adjustable)	
Shifting range	Х		±2 mm (continue	ously adjustable)	
Shifting range	Υ		±2 mm (continue	ously adjustable)	
Shock (DIN EN 60068-2-27)			15g / 6 ms in XYZ ax	is, 1000 shocks each	
Vibration (DIN EN 60068-2-6)			2g / 20 500 Hz in X	YZ axis, 10 cycles each	
Adjustment mechanism		S	Screw setting mechanism via M3x0	0.25 screw with hexagon socket 1.	5
Installation			2x 2 mounting	holes for M4x1	
Sensor mounting		Radial clamping for ø 8 mm	Radial clamping for ø 12 mm	Radial clamping for ø 20 mm	Radial clamping for ø 27 mm
Compatibility		confocalDT: IFS2403 series	confocalDT: IFS2404-2 IFS2407-0,1 IFS2407-0,8	confocalDT: IFS2406-2,5/VAC interferoMETER: IMP-TH70	confocalDT: IFS2405-0,3 IFS2405-1 IFS2406-3 IFS2406-10 IFD2411-x

Application examples:

Alignment

Subsequent correction of the mounting position

Compensates for incorrect target position

Positioning

Shifting the sensor to target area

Accessories Mounting adapter for two-sided thickness measurements

dululul

Optimal alignment of the optical axes enables high precision in two-sided thickness measurements

Pre-assembled for easy installation and fast commissioning

Ideally suitable for machine integration

For two-sided thickness measurements, the JMA-Thickness mounting adapter supports the alignment of the measuring points to one another. This means that the measuring points are arranged absolutely congruent to each other so that the sensors are positioned exactly on an optical axis. This prevents measurements at an offset and a reliable measurement result is achieved with the highest possible precision.

When delivered, the two mounting adapters are pre-mounted on a mounting plate and aligned with one another. This simplifies installation and the measuring system can be put into operation more quickly. After installation into the machine, the plate can be removed, if necessary.

Scope of supply

- = 2 JMA-xx
- I JMP mounting plate
- I hexagon screwdriver 1.5 mm
- 1 Allen wrench 2.5 mm
- 1 Allen wrench 3.0 mm
- 1 Assembly instructions
- 2 optional reducing sleeves

(depending on the package and the corresponding sensor)

Model	JMA-Thickness	-08	-12	-20	-27
Shock (DIN	EN 60068-2-27)		15g / 6 ms in XYZ axi	s, 1000 shocks each	
Vibration (D	IN EN 60068-2-6)		2g / 20 500 Hz in XY	Z axis, 10 cycles each	
Adjustment	mechanism	S	Screw setting mechanism via M3x0	.25 screw with hexagon socket 1.	5
Sensor mou	unting	Radial clamping for ø 8 mm	Radial clamping for ø 12 mm	Radial clamping for ø 20 mm	Radial clamping for ø 27 mm
Compatibilit	ty	confocalDT: IFS2403 series	confocalDT: IFS2404-2 IFS2407-0,1	confocalDT: IFS2406-2,5/VAC interferoMETER: IMP-TH70	confocalDT: IFS2405-0,3 IFS2405-1 IFS2406-3 IFS2406-10 IFD2411-x

More precision with two-sided thickness measurements

Measurement error with tilted target

With JMA-Thickness: Measures exactly at the opposite position

Without JMA-Thickness: Incorrect thickness measurement with vibrations

With JMA-Thickness: Sensors are on one optical axis – provides stability even with vibrating objects

Without JMA-Thickness: Sensors positioned incorrectly – no thickness measurement possible

With JMA-Thickness: Optimal positioning support – object visible for both sensors

Accessories Cables and connectors

Software

IFD24xx-Tool Software demo tool included

Light source accessories

IFL2422/LED	Lamp module for IFC2422 and IFC2466
IFL24x1/LED	Lamp module for IFC2421 and IFC2465

Optical fiber extension for sensors

CE2402 cable with 2x E2000/APC connectorsCE2402-xExtension for optical fiber (3 m, 10 m, 13 m, 30 m, 50 m)CE2402/PT3-xOptical fiber extension with protection tube for mechanical stress

CE2402/P13-X	Oplical liber extension with protection tube for mechanical stres
	(3 m, 10 m, customer-specific length up to 50 m)

Optical fibers for IFS2404/IFS2404-2 and IFS2404/90-2 sensors

C2404-x	Optical fiber with FC/APC and E2000/APC connectors
	Fiber core diameter 20 μ m (2 m)

Optical fibers for IFS2405/IFS2406/2407-0,1/ IFS2407-3/IFD2411-x sensors

C2401 cable with FC/APC and E2000/APC connectors

C2401-x	Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2401/PT3-x	Optical fiber with protection tube for mechanical stress
	(3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2401-x(01)	Optical fiber core diameter 26 μ m (3 m, 5 m, 15 m)
C2401-x(10)	Drag-chain suitable optical fiber (3 m, 5 m, 10 m)

C2400 cable with 2x FC/APC connectors

C2400-x	Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2400/PT-x	Optical fiber with protection tube for mechanical stress
	(3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2400/PT-x-Vac	Optical fiber with protection tube suitable for use in vacuum
	(3 m, 5 m, 10 m, customer-specific length up to 50 m)

Cables for IFD2410 /2415 sensors

PC2415-x	Supply/interface cable, drag-chain suitable,
	3 m, 6 m, 9 m, 15 m
PC2415-x/OE	Supply/interface cable open ends, drag-chain suitable,
	3 m, 6 m, 9 m, 15 m
PC2415-1/Y	Supply/interface cable Y, open ends and RJ45 plug,
	drag-chain suitable, 1 m
SC2415-x/OE	Multifunction cable, open ends, drag-chain suitable,
	3 m, 6 m, 9 m, 15 m

Cables for IFD2411 sensors

SC2415-x/OE	Multifunction cable, open ends, drag-chain suitable, 3 m, 6 m, 9 m, 15 m
C2401-x	Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)

Optical fiber C2401-x

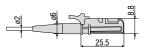
Optical fiber with coating C2401/PT3-x

Drag-chain suitable optical fiber C2401-x(10)

Optical fibers for IFS2407/90-0,3 sensors

C2407-x Optical fiber with DIN connector and E2000/APC (2 m, 5 m)

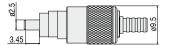
Vacuum feedthrough

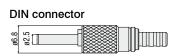

C2402/Vac/KF16	Vacuum feedthrough with optical fiber, 1 channel, vacuum side FC/APC
	non-vacuum side E2000/APC, clamping flange KF 16
C2405/Vac/1/KF16	Vacuum feedthrough on both sides FC/APC socket, 1 channel,
	clamping flange type KF 16
C2405/Vac/1/CF16	Vacuum feedthrough on both sides FC/APC socket, 1 channel,
	flange type CF 16
C2405/Vac/6/CF63	Vacuum feedthrough FC/APC socket, 6 channels,
	flange type CF 63

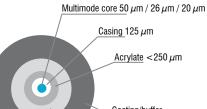
Other accessories

SC2471-x/USB/IND	Connector cable IFC2461/71, 3 m, 10 m, 20 m
SC2471-x/IF2008	Connector cable IFC2461/71-IF2008, 3 m, 10 m, 20 m
PS2020	Power supply 24V / 2.5A
EC2471-3/OE	Encoder cable, 3m
IF2030/PNET	Interface module for PROFINET connection
IF2030/ENETIP	Interface module for EtherNet/IP connection

Optical fiber


Temperature range : -50 °C to 90 °C Bending radius: 30/40 mm




E2000/APC standard connector

FC/APC standard connector

Coating/buffer PVC: polyvinyl chloride

Strain relief PVDF: polyvinylidene fluoride

Accessories Interface modules

Module	IFD2410	IFD2411	IFD2415	IFC242x	IFC246x
IF2001/USB Single-channel RS422/USB converter cable	~	~	~	~	~
IF2004/USB RS422/USB converter to convert up to 4 digital signals to USB	0	~	0	~	~
IF2008/ETH Interface module for Ethernet connection for up to 8 sensors	\otimes	\otimes	\otimes	~	~
IF2008PCIE Interface card for multiple sensor signals; analog and digital interfaces	0	~	0	~	~
IF2035/PNET Interface module for Industrial Ethernet connection (PROFINET)	\otimes	0	\otimes	~	~
IF2035/ENETIP Interface module for Industrial Ethernet connection (EtherNet/IP)	0	0	0	~	~

IF2001/USB converter RS422 to USB

The RS422/USB converter converts the digital signals of a confocal controller into a USB data packet. The sensor and the converter are connected via the RS422 interface of the converter. Data output is done via USB interface. The converter loops through further signals and functions such as laser on/off, switch signals and function output. The connected controllers and the converter can be programmed through software.

Special features

- Robust aluminum housing
- Easy sensor connection via screw terminals (plug and play)
- Conversion from RS422 to USB
- Supports baud rates from 9.6 kBaud to 12 MBaud

IF2004/USB: 4-channel converter from RS422 to USB

The RS422/USB converter is used for transforming digital signals of up to four confocal controllers into USB data signals. The converter has four trigger inputs and a trigger output for connecting additional converters. Data is output via an USB interface. The connected controllers and the converter can be programmed through software. The COM interfaces can be used individually and can be switched.

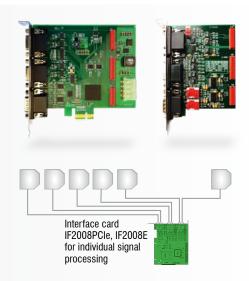
Special features

- 4x digital signals via RS422
- 4x trigger inputs, 1x trigger output
- Synchronous data acquisition
- Data output via USB

IF2008/ETH IF2008/ETH Interface module for Ethernet connection with up to 8 sensors

The IF2008/ETH integrates up to eight sensors and/or encoders with an RS422 interface into an Ethernet network. Four programmable switching in-/outputs (TTL and HTL logic) are available.

10 indicator LEDs directly on the module show both the channel and the device status. In addition, acquisition and output of data via Ethernet is in addition performed at high speeds up to 200 kHz. Parameter setting of the interface module can be easily done via the web interface.


IF2008PCIe/IF2008E

Interface card for synchronous data acquisition

Absolute synchronous data acquisition is a decisive factor for the deflection or straightness measurement using several controllers. The IF2008PCIe interface card is designed for installation in PCs and enables the synchronous acquisition of four digital sensor signals and two encoders. The data is stored in a FIFO memory in order to enable resource-saving processing in blocks in the PC. The IF2008E expansion board enables to detect in addition two digital controller signals, two analog controller signals and eight I/O signals.

Special features

- IF2008PCIe Basic printed circuit board: 4 digital signals and 2 encoders
- IF2008E Expansion board: 2x digital signals, 2x analog signals and 8x I/O signals

IF2035

Interface module for Industrial Ethernet connection

The IF2035 interface modules are designed for easy connection of Micro-Epsilon sensors to Ethernet-based fieldbuses. The IF2035 is compatible with sensors that output data via an RS422 or RS485 interface and supports the common Industrial Ethernet protocols EtherCAT, PROFINET and EtherNet/IP.

These modules operate on the sensor side with up to 4 MBd and have two network connections for different network topologies. In addition, the IF2035-EtherCAT offers a 4-fold oversampling function, which enables faster measurements than the bus cycle allows, if required. Installation in control cabinets is via a DIN rail.

Sensors and Systems from Micro-Epsilon

Sensors and systems for displacement, distance and position

Optical micrometers and fiber optics, measuring and test amplifiers

Sensors and measurement devices for non-contact temperature measurement

Color recognition sensors, LED analyzers and inline color spectrometers

Measuring and inspection systems for metal strips, plastics and rubber

3D measurement technology for dimensional testing and surface inspection

MICRO-EPSILON Headquarters Koenigbacher Str. 15 · 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com · www.micro-epsilon.com